Infoscience

Report

On Deciding Functional Lists with Sublist Sets

Motivated by the problem of deciding verification conditions for the verification of functional programs, we present new decision procedures for automated reasoning about functional lists. We first show how to decide in NP the satisfiability problem for logical constraints containing equality, constructor, selectors, as well as the transitive sublist relation. We then extend this class of constraints with operators to compute the set of all sublists, and the set of objects stored in a list. Finally, we support constraints on sizes of sets, which gives us the ability to compute list length as well as the number of distinct list elements. We show that the extended theory is reducible to the theory of sets with linear cardinality constraints, and therefore still in NP. This reduction enables us to combine our theory with other decidable theories that impose constraints on sets of objects, which further increases the potential of our decidability result in verification of functional and imperative software.

    Reference

    • EPFL-REPORT-148361

    Record created on 2010-04-15, modified on 2016-08-08

Fulltext

  • There is no available fulltext. Please contact the lab or the authors.

Related material