Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison
 
research article

Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison

Cheng, Lixin  
•
Thome, John R.  
2009
Applied Thermal Engineering

The flow pattern based flow boiling heat transfer and two-phase pressure drop models for CO2, recently developed by Cheng et al. [L Cheng, G. Ribatski. J. Moreno Quiben, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part I - A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops, Int. J. Heat Mass transfer 51 (2008) 111-124; L Cheng, G. Ribatski, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part 11 - An updated general flow boiling heat transfer model based on flow patterns, Int. J. Heat Mass transfer 51 (2008) 125-135], have been used to predict the thermal performance Of CO2 in a silicon multi-microchannel evaporator (67 parallel channels with a width of 0.223 mm, a height of 0.68 mm and a length of 20 mm) for cooling of a microprocessor. First, some simulation results Of CO2 flow boiling heat transfer and two-phase pressure drops in microscale channels are presented. The effects of channel diameter, mass flux, saturation temperature and heat flux on flow boiling heat transfer coefficients and two-phase pressure drops are next addressed. Then, simulations of the base temperatures of the silicon multi-microchannel evaporator using R236fa and CO2 were performed for the following conditions: base heat fluxes from 20 to 100 W/cm(2), a mass flux of 987.6 kg/m(2)s and a saturation temperature of 25 degrees C. These show that the base temperatures using CO2 are much lower than those using R236fa. Compared to R236fa, CO2 has much higher heat transfer coefficients and lower pressure drops in the multi-microchannel evaporator. However, the operation pressure of CO2 is much higher than that of R236fa. Based on the analysis and comparison, CO2 appears to be a promising coolant for microprocessors at low operating temperatures but also presents a great technological challenge like other new cooling technologies. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.applthermaleng.2008.12.019
Web of Science ID

WOS:000269347000040

Author(s)
Cheng, Lixin  
Thome, John R.  
Date Issued

2009

Publisher

Elsevier

Published in
Applied Thermal Engineering
Volume

29

Issue

11-12

Start page

2426

End page

2432

Subjects

Co2

•

Flow boiling

•

Heat transfer

•

Evaporation

•

Two-phase flow

•

Pressure drop

•

Microchannel

•

Chips

•

Cooling

•

Microprocessor

•

Micro-evaporator

•

Heat-Transfer Characteristics

•

Silicon Multi-Microchannels

•

2-Phase Flow

•

Part Ii

•

Transfer Model

•

Sink

•

Channels

•

Issues

•

Tubes

Editorial or Peer reviewed

NON-REVIEWED

Written at

EPFL

EPFL units
LTCM  
Available on Infoscience
March 19, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/48308
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés