Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Exploring Contextual Information in a Layered Framework for Group Action Recognition
 
report

Exploring Contextual Information in a Layered Framework for Group Action Recognition

Zhang, Dong
•
Gatica-Perez, Daniel  
•
Bengio, Samy  
2006

Contextual information is important for sequence modeling. Hidden Markov Models (HMMs) and extensions, which have been widely used for sequence modeling, make simplifying, often unrealistic assumptions on the conditional independence of observations given the class labels, thus cannot accommodate overlapping features or long-term contextual information. In this paper, we introduce a principled layered framework with three implementation methods that take into account contextual information (as available in the whole or part of the sequence). The first two methods are based on state {\em alpha} and {\em gamma} posteriors (as usually referred to in the HMM formalism). The third method is based on Conditional Random Fields (CRFs), a conditional model that relaxes the independent assumption on the observations required by HMMs for computational tractability. We illustrate our methods with the application of recognizing group actions in meetings. Experiments and comparison with standard HMM baseline showed the validity of the proposed approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rr-06-41.pdf

Access type

openaccess

Size

100.93 KB

Format

Adobe PDF

Checksum (MD5)

8e9d51e14652105a6b310f9084dec32d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés