Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. An Information Theoretic Approach to Speaker Diarization of Meeting Data
 
Loading...
Thumbnail Image
report

An Information Theoretic Approach to Speaker Diarization of Meeting Data

Vijayasenan, Deepu  
•
Valente, Fabio
•
Bourlard, Hervé  
2008

A speaker diarization system based on an information theoretic framework is described. The problem is formulated according to the {\em Information Bottleneck} (IB) principle. Unlike other approaches where the distance between speaker segments is arbitrarily introduced, IB method seeks the partition that maximizes the mutual information between observations and variables relevant for the problem while minimizing the distortion between observations. This solves the problem of choosing the distance between speech segments, which becomes the Jensen-Shannon divergence as it arises from the IB objective function optimization. We discuss issues related to speaker diarization using this information theoretic framework such as the criteria for inferring the number of speakers, the trade-off between quality and compression achieved by the diarization system, and the algorithms for optimizing the objective function. Furthermore we benchmark the proposed system against a state-of-the-art system on the NIST RT06 (Rich Transcription) data set for speaker diarization of meeting. The IB based system achieves a Diarization Error Rate of (23.2%) as compared to (23.6%) of the baseline system. This approach being mainly based on non-parametric clustering, it runs significantly faster then the baseline HMM/GMM based system, resulting in faster-then-real-time diarization.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

vijayasenan-idiap-rr-08-58.pdf

Access type

openaccess

Size

231.88 KB

Format

Adobe PDF

Checksum (MD5)

1dee4bd184155b1c6562e7994526e5e8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés