Exploiting Phoneme Similarities in Hybrid HMM-ANN Keyword Spotting

We propose a technique for generating alternative models for keywords in a hybrid hidden Markov model - artificial neural network (HMM-ANN) keyword spotting paradigm. Given a base pronunciation for a keyword from the lookup dictionary, our algorithm generates a new model for a keyword which takes into account the systematic errors made by the neural network and avoiding those models that can be confused with other words in the language. The new keyword model improves the keyword detection rate while minimally increasing the number of false alarms.


Year:
2007
Publisher:
IDIAP
Note:
Submitted for publication
Laboratories:




 Record created 2010-02-11, last modified 2018-03-17

n/a:
Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)