Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Discriminative Cue Integration for Medical Image Annotation
 
report

Discriminative Cue Integration for Medical Image Annotation

Tommasi, Tatiana  
•
Orabona, Francesco
•
Caputo, Barbara  
2007

Automatic annotation of medical images is an increasingly important tool for physicians in their daily activity. Hospitals produce nowadays an increasing amount of data. Manual annotation is very costly and prone to human mistakes. This paper proposes a multi-cue approach to automatic medical image annotation. We represent images using global and local features. These cues are then combined together using three alternative approaches, a high-level, a mid-level and a low-level fusion scheme, all based on the Support Vector Machines (SVM) algorithm. We tested our methods on the IRMA database, and with the mid- and high-level integration scheme we did participate to the 2007 ImageCLEFmed benchmark evaluation, in the medical image annotation track. These algorithms ranked first and fifth respectively among all submission. Experiments using the low-level integration scheme also confirm the power of cue integration for this task.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

tommasi-idiap-rr-07-64.pdf

Access type

openaccess

Size

521.07 KB

Format

Adobe PDF

Checksum (MD5)

b81a61f249c856b1a7947d6c8db0949f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés