Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. A Bayesian Alternative to Gain Adaptation in Autoregressive Hidden Markov Models
 
report

A Bayesian Alternative to Gain Adaptation in Autoregressive Hidden Markov Models

Mesot, Bertrand
•
Barber, David
2006

Models dealing directly with the raw acoustic speech signal are an alternative to conventional feature-based HMMs. A popular way to model the raw speech signal is by means of an autoregressive (AR) process. Being too simple to cope with the nonlinearity of the speech signal, the AR process is generally embedded into a more elaborate model, such as the switching autoregressive HMM (SAR-HMM). A fundamental issue faced by models based on AR processes is that they are very sensitive to variations in the amplitude of the signal. One way to overcome this limitation is to use Gain Adaptation to adjust the amplitude by maximising the likelihood of the observed signal. However, adjusting model parameters by maximising test likelihoods is fundamentally outside the framework of standard statistical approaches to machine learning, since this may lead to overfitting when the models are sufficiently flexible. We propose a statistically principled alternative based on an exact Bayesian procedure in which priors are explicitly defined on the parameters of the AR process. Explicitly, we present the Bayesian SAR-HMM and compare the performance of this model against the standard Gain-Adapted SAR-HMM on a single digit recognition task, showing the effectiveness of the approach and suggesting thereby a principled and straightforward solution to the issue of Gain Adaptation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mesot-idiap-rr-06-55.pdf

Access type

openaccess

Size

146.42 KB

Format

Adobe PDF

Checksum (MD5)

db013a1a71e7b039bed42677d54df809

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés