Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Daily Routine Classification from Mobile Phone Data
 
conference paper

Daily Routine Classification from Mobile Phone Data

Farrahi, Katayoun  
•
Gatica-Perez, Daniel  
2008
MLMI 2008: Machine Learning for Multimodal Interaction
Workshop on Machine Learning and Multimodal Interaction (MLMI08)

The automatic analysis of real-life, long-term behavior and dynamics of individuals and groups from mobile sensor data constitutes an emerging and challenging domain. We present a framework to classify people's daily routines (defined by day type, and by group affiliation type) from real-life data collected with mobile phones, which include physical location information (derived from cell tower connectivity), and social context (given by person proximity information derived from Bluetooth). We propose and compare single- and multi-modal routine representations at multiple time scales, each capable of highlighting different features from the data, to determine which best characterized the underlying structure of the daily routines. Using a massive data set of 87000+ hours spanning four months of the life of 30 university students, we show that the integration of location and social context and the use of multiple time-scales used in our method is effective, producing accuracies of over 80% for the two daily routine classification tasks investigated, with significant performance differences with respect to the single-modal cues.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

farrahi-mlmi-2008.pdf

Access type

openaccess

Size

245.56 KB

Format

Adobe PDF

Checksum (MD5)

05b4cc0730c1b718c814c04f2f9fdc55

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés