Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Using Posterior-Based Features in Template Matching for Speech Recognition
 
conference paper

Using Posterior-Based Features in Template Matching for Speech Recognition

Aradilla, Guillermo
•
Vepa, Jithendra
•
Bourlard, Hervé  
2006
Interspeech 2006
International Conference on Spoken Language Processing

Given the availability of large speech corpora, as well as the increasing of memory and computational resources, the use of template matching approaches for automatic speech recognition (ASR) have recently attracted new attention. In such template-based approaches, speech is typically represented in terms of acoustic vector sequences, using spectral-based features such as MFCC of PLP, and local distances are usually based on Euclidean or Mahalanobis distances. In the present paper, we further investigate template-based ASR and show (on a continuous digit recognition task) that the use of posterior-based features significantly improves the standard template-based approaches, yielding to systems that are very competitive to state-of-the-art HMMs, even when using a very limited number (e.g., 10) of reference templates. Since those posteriors-based features can also be interpreted as a probability distribution, we also show that using Kullback-Leibler (KL) divergence as a local distance further improves the performance of the template-based approach, now beating state-of-the-art of more complex posterior-based HMMs systems (usually referred to as "Tandem").

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

aradilla-icslp-2006.pdf

Access type

openaccess

Size

120.04 KB

Format

Adobe PDF

Checksum (MD5)

784eb2988d4ca260e9db334503dac83e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés