Files

Action Filename Description Size Access License Resource Version
Show more files...

Abstract

In this article, we report on the use of transmission electron microscopy (TEM) for the fabrication of high-performance textured amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction (HJ) solar cells. Whereas classical thin-film characterization techniques allowed us to optimize the a-Si:H layer properties for flat HJ solar cells (open-circuit voltages (VOC) up to 710 mV and energy conversion efficiencies up to 19.1%), these techniques can not always be fully exploited on textured c-Si surfaces. Nevertheless, in this situation, TEM micrographs permit us to identify device performance limiting factors, such as, e.g., local epitaxy in pyramid valleys as the main source of our VOC-loss. Minimizing this local epitaxy by adjusting the amorphous Si based layers growth conditions and improving the c-Si surface morphology yields Si HJ solar cells with VOCs over 700 mV.

Details

Actions

Preview