Textured silicon heterojunction solar cells with over 700mV open-circuit voltage studied by transmission electron microscopy

In this article, we report on the use of transmission electron microscopy (TEM) for the fabrication of high-performance textured amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction (HJ) solar cells. Whereas classical thin-film characterization techniques allowed us to optimize the a-Si:H layer properties for flat HJ solar cells (open-circuit voltages (VOC) up to 710 mV and energy conversion efficiencies up to 19.1%), these techniques can not always be fully exploited on textured c-Si surfaces. Nevertheless, in this situation, TEM micrographs permit us to identify device performance limiting factors, such as, e.g., local epitaxy in pyramid valleys as the main source of our VOC-loss. Minimizing this local epitaxy by adjusting the amorphous Si based layers growth conditions and improving the c-Si surface morphology yields Si HJ solar cells with VOCs over 700 mV.


Presented at:
23 EUPVSEC, Valencia, September 1-5, 2008
Year:
2008
Note:
IMT-NE Number: 530
Laboratories:




 Record created 2010-02-01, last modified 2018-09-13

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)