Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system
Energy storage systems are becoming more important for load leveling, especially for widespread use of intermittent renewable energy. Compressed air energy storage (CAES) is a promising method for energy storage, but large scale CAES is dependent on suitable underground geology. Micro-CAES with man-made air vessels is a more adaptable solution for distributed future power networks. In this paper, energy and exergy analyses of a micro-CAES system are performed, and, to improve the efficiency of the system, some innovative ideas are introduced. The results show that a micro-CAES system could be a very effective system for distributed power networks as a combination that provides energy storage, generation with various heat sources, and an air-cycle heating and cooling system, with a energy density feasible for distributed energy storage and a good efficiency due to the multipurpose system. Especially, quasi-isothermal compression and expansion concepts result in the best exergy efficiencies
Energy and exergy analysis of a micro-compressed .pdf
restricted
448.57 KB
Adobe PDF
9e46e6a0dfe971d9a0e47523e2340c55