Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Role of glutamate in neuron-glia metabolic coupling
 
review article

Role of glutamate in neuron-glia metabolic coupling

Magistretti, Pierre J  
2009
The American journal of clinical nutrition

The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiologic principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography. Approximately 10 y ago we provided experimental evidence that indicated a central role of glutamate signaling on astrocytes in neurometabolic coupling. The basic mechanism in neurometabolic coupling is the glutamate-stimulated aerobic glycolysis in astrocytes, such that the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na(+)-K(+) ATPase triggers glucose uptake and its glycolytic processing, which results in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fueling of the neuronal energy demands associated with synaptic transmission. Analyses of this coupling have been extended in vivo and have defined the methods of coupling for inhibitory neurotransmission as well as its spatial extent in relation to the propagation of metabolic signals within the astrocytic syncytium. On the basis of a large body of experimental evidence, we proposed an operational model, "the astrocyte-neuron lactate shuttle." A series of results obtained by independent laboratories have provided further support for this model. This body of evidence provides a molecular and cellular basis for interpreting data that are obtained with functional brain imaging studies.

  • Details
  • Metrics
Type
review article
DOI
10.3945/ajcn.2009.27462CC
Web of Science ID

WOS:000269257300072

PubMed ID

19571222

Author(s)
Magistretti, Pierre J  
Date Issued

2009

Published in
The American journal of clinical nutrition
Volume

90

Issue

3

Start page

875S

End page

880S

Subjects

100Th Anniversary Symposium

•

Blood-Brain-Barrier

•

Umami Taste

•

Glucose-Metabolism

•

Physiological Stimulation

•

Gastrointestinal Function

•

Confocal Microscopy

•

Multiple Receptors

•

Aerobic Glycolysis

•

Dietary Glutamate

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LNDC  
Available on Infoscience
January 8, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/45346
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés