Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes
 
research article

Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes

Allaman, Igor  
•
Pellerin, L
•
Magistretti, Pierre J.  
2000
Glia

Brain glycogen levels are dynamically regulated by certain neurotransmitters, including noradrenaline (NA) and vasoactive intestinal peptide (VIP). In particular, glycogen synthesis involves activation by NA and VIP of the transcription factors C/EBPbeta and -delta as well as the induction of glycogen synthase. Glycogen accumulation is found in a variety of neuropathological conditions, including reactive astrocytosis after CNS lesions, as well as in Alzheimer's disease. Protein targeting to glycogen (PTG) belongs to a family of proteins that play a key role in glycogen synthesis in peripheral tissues. In this study, we report the presence of PTG mRNA in adult mouse brain, as well as in astrocytes, a non-neuronal cell type that contains most of brain glycogen. Using primary cultures of mouse cortical astrocytes, we observed that NA leads to time- and concentration-dependent induction of PTG mRNA expression. This effect, concomitant to an enhancement of glycogen synthesis in these cells, depends on the activation of beta(1)-adrenergic receptors. Induction of PTG mRNA expression was mimicked by the adenylate cyclase activator forskolin and by dibutyryl cAMP, suggesting the involvement of the cAMP-dependent signal transduction cascade. Among other neuroactive substances known to elevate glycogen levels in astrocytes, VIP had a comparable effect to that of noradrenaline, whereas insulin and glutamate were without effect on PTG mRNA expression. These data suggest that increased PTG expression by neurotransmitters such as noradrenaline and VIP could represent a major event leading to enhancement of glycogen levels in astrocytes.

  • Details
  • Metrics
Type
research article
DOI
10.1002/(SICI)1098-1136(200006)30:4<382::AID-GLIA70>3.0.CO;2-0
PubMed ID

10797618

Author(s)
Allaman, Igor  
Pellerin, L
Magistretti, Pierre J.  
Date Issued

2000

Publisher

Wiley-Blackwell

Published in
Glia
Volume

30

Issue

4

Start page

382

End page

91

Subjects

Intracellular Signaling Peptides and Proteins

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LNDC  
Available on Infoscience
January 8, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/45255
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés