Processor Speed Control with Thermal Constraints

We consider the problem of adjusting speeds of multiple computer processors, sharing the same thermal environment, such as a chip or multichip package. We assume that the speed of each processor (and associated variables such as power supply voltage) can be controlled, and we model the dissipated power of a processor as a positive and strictly increasing convex function of the speed. We show that the problem of processor speed control subject to thermal constraints for the environment is a convex optimization problem. We present an efficient infeasible-start primal-dual interior-point method for solving the problem. We also present a distributed method, using dual decomposition. Both of these approaches can be interpreted as nonlinear static control laws, which adjust the processor speeds based on the measured temperatures in the system. We give numerical examples to illustrate performance of the algorithms.


Published in:
IEEE Transactions on Circuits and Systems: Part I (TCAS-I), 56, 9, 1994-2008
Year:
2009
Keywords:
Laboratories:




 Record created 2009-10-22, last modified 2018-03-18

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)