Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Experimental investigation of a pump-turbine at off-design operating conditions
 
conference paper

Experimental investigation of a pump-turbine at off-design operating conditions

Hasmatuchi, Vlad  
•
Farhat, Mohamed  
•
Maruzewski, Pierre  
Show more
Pavel, Rudolf
2009
Proceedings of the 3rd International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
3rd International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems

Pumped storage power plants are key components for the development of new renewable CO2-free primary energies and the security enhancement of electricity supply. They also offer interesting business opportunities in nowadays liberalized electricity market. However, the fast and frequent switching between pumping and generating modes as well as extended operations at off- design conditions poses technical challenges related to large unsteady hydrodynamic forces. In the present study, a reduced scale model of a low specific speed radial pump- turbine is investigated to identify the onset and development of flow instabilities. The focus is put on the generating mode at off-design conditions involving runaway and “S-shape”. Wall pressure measurements in the stator are performed with the help of 30 miniature piezoresistive sensors. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuation is observed mainly in the channels between wicket gates. The spectral analysis shows a rise of a low frequency component (about 70% of the runner rotational frequency) at runaway, which further increases as the zero discharge condition is approached. Phase analysis reveals that several instability sources, at least three, rotate with runner at sub synchronous speed. Although the nature of the rotating cells could not be described, it is thought that back flow may develop in the gap between runner and distributor with an alternate switch between generating and pumping modes of runner channels. Nevertheless, rotating flow separation may also develop in the runner channels leading to their blockage.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Vlad_Hasmatuchi_IAHRWG2009.pdf

Access type

openaccess

Size

741 KB

Format

Adobe PDF

Checksum (MD5)

144c26b91ca75786b915ae784e04dcc6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés