Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models
 
research article

Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models

Mancini, Loriano  
•
Ronchetti, Elvezio
•
Trojani, Fabio
2005
Journal of the American Statistical Association

This paper studies the local robustness of estimators and tests for the conditional location and scale parameters in a strictly stationary time series model. We first derive optimal bounded-influence estimators for such settings under a conditionally Gaussian reference model. Based on these results, optimal bounded-influence versions of the classical likelihood-based tests for parametric hypotheses are obtained. We propose a feasible and efficient algorithm for the computation of our robust estimators, which makes use of analytical Laplace approximations to estimate the auxiliary recentering vectors ensuring Fisher consistency in robust estimation. This strongly reduces the necessary computation time by avoiding the simulation of multidimensional integrals, a task that has typically to be addressed in the robust estimation of nonlinear models for time series. In some Monte Carlo simulations of an AR 1)-ARCH(1) process we show that our robust procedures maintain a very high efficiency under ideal model conditions and at the same time perform very satisfactorily under several forms of departure from conditional normality. On the contrary, classical Pseudo Maximum Likelihood inference procedures are found to be highly inefficient under such local model misspecifications. These patterns are confirmed by an application to robust testing for ARCH.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SSRN-id414060.pdf

Access type

openaccess

Size

448.17 KB

Format

Adobe PDF

Checksum (MD5)

beed5fa8ac15bc551d549f1acc202be8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés