Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Oxygen diffusion through the disordered oxide network during silicon oxidation
 
research article

Oxygen diffusion through the disordered oxide network during silicon oxidation

Bongiorno, A.
•
Pasquarello, Alfredo  
2002
Physical Review Letters

An atomic-scale description is provided for the long-range oxygen migration through the disordered SiO2 oxide during silicon oxidation. First-principles calculations, classical molecular dynamics, and Monte Carlo simulations are used in sequence to span the relevant length and time scales. The O-2 molecule is firmly identified as the transported oxygen species and is found to percolate through interstices without exchanging oxygen atoms with the network. The interstitial network for O-2 diffusion is statistically described in terms of its potential energy landscape and connectivity. The associated activation energy is found in agreement with experimental values.

  • Details
  • Metrics
Type
research article
DOI
10.1103/PhysRevLett.88.125901
Web of Science ID

WOS:000174542000050

Author(s)
Bongiorno, A.
Pasquarello, Alfredo  
Date Issued

2002

Published in
Physical Review Letters
Volume

88

Issue

12

Article Number

125901

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CSEA  
Available on Infoscience
October 8, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/43433
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés