Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tidal networks 3. Landscape-forming discharges and studies in empirical geomorphic relationships
 
research article

Tidal networks 3. Landscape-forming discharges and studies in empirical geomorphic relationships

Rinaldo, A.  
•
Fagherazzi, S.
•
Lanzoni, S.
Show more
1999
Water Resources Research

In this final part of our study [Fagherazzi et al., this issue; Rinaldo et al., this issue] we propose a simple model for predicting the local peak ebb and flood discharges throughout a tidal network and use this model to investigate scaling relationships between channel morphology and discharge in the Venice Lagoon. The model assumes that the peak flows are driven by spring (astronomical) tidal fluctuations (rather than precipitation-induced runoff or seiche, sea surge, or storm-induced tidal currents) and exploits the procedure presented by Fagherazzi et al. [this issue] for delineating a time-invariant drainage area to any channel cross section. The discharge is estimated using the Fagherazzi et al. model to predict water surface topography, and hence flow directions throughout the channel network and across unchanneled regions, and the assumption of flow continuity. Water surface elevation adjustment, not assumed to be instantaneous throughout the network, is defined by a suitable solution of the flow equations where significant morphological information is used and is reduced to depending on just one parameter, the Chezy resistance coefficient. For the Venice Lagoon, peak discharges are well predicted by our model. We also document well-defined power law relationships between channel width and peak discharge, watershed area, and flow, whereas curved, nonscaling relationships were found for channel cross-sectional area as a function of peak discharge. Hence our model supports the use of a power law dependency of peak discharge with drainage area in the Venice Lagoon and provides a simple means to explore aspects of morphodynamic adjustments in tidal systems.

  • Details
  • Metrics
Type
research article
DOI
10.1029/1999WR900238
Author(s)
Rinaldo, A.  
Fagherazzi, S.
Lanzoni, S.
Marani, M.
Dietrich, W. E.
Date Issued

1999

Published in
Water Resources Research
Volume

35

Issue

12

Start page

3919

End page

3929

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ECHO  
Available on Infoscience
October 7, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/43201
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés