Almost-Uniform Sampling of Points on High-Dimensional Algebraic Varieties

We consider the problem of uniform sampling of points on an algebraic variety. Specifically, we develop a randomized algorithm that, given a small set of multivariate polynomials over a sufficiently large finite field, produces a common zero of the polynomials almost uniformly at random. The statistical distance between the output distribution of the algorithm and the uniform distribution on the set of common zeros is polynomially small in the field size, and the running time of the algorithm is polynomial in the description of the polynomials and their degrees provided that the number of the polynomials is a constant.


Publié dans:
Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS)
Présenté à:
26th International Symposium on Theoretical Aspects of Computer Science (STACS), Freibourg, Germany, February 2009
Année
2009
Mots-clefs:
Laboratoires:


Note: Le statut de ce fichier est: Seulement EPFL


 Notice créée le 2009-09-30, modifiée le 2019-08-12

n/a:
Télécharger le documentPDF
Lien externe:
Télécharger le documentURL
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)