Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage
 
conference paper

Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage

Berten, Stefan
•
Dupont, Philippe  
•
Fabre, Laurent  
Show more
2009
Proceedings of FEDSM 2009
FEDSM 2009

In centrifugal pumps, the interaction between the rotating impeller and the stationary diffuser generates specific pressure fluctuation patterns. When the pump is operated at off design conditions, these pressure fluctuations increase. The resulting rise of mechanical vibration levels may negatively affect the operational performance and the life span of mechanical components. This paper presents detailed pressure fluctuation measurements performed in a high speed centrifugal pump stage at full scale at various operating conditions. The impeller and stationary part (diffuser, exit chamber) of the pump stage have been equipped with piezo-resistive miniature pressure sensors. The measured data in the impeller have been acquired using a newly developed onboard data acquisition system, designed for rotational speeds up to 6000 rpm. The measurements have been performed synchronously in the rotating and stationary domains. The analysis of pressure fluctuations at the impeller blade trailing edge, which had significantly larger amplitudes as the pressure fluctuations in the stationary domain, allowed the detection and exploration of stalled channels in the vaned diffuser. This stall may be stationary or rotating with different rotational speeds and number of stalled channels, depending on the relative flow rate and the rotational speed of the pump. The stall yields pressure fluctuations at frequencies which are multiples of the rotational speed of the impeller and generates additional sources of mechanical excitation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FEDSM2009-78562.pdf

Access type

openaccess

Size

8.4 MB

Format

Adobe PDF

Checksum (MD5)

f9bcb482155d7e7a3e382c8bffb5074e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés