Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. New Results on Optimizing Rooted Triplets Consistency
 
conference paper

New Results on Optimizing Rooted Triplets Consistency

Byrka, Jaroslaw
•
Guillemot, Sylvain
•
Jansson, Jesper
Hong, Seok-Hee
•
Nagamochi, Hiroshi
Show more
2008
Proceedings of the 19th International Symposium on Algorithms and Computation
19th International Symposium on Algorithms and Computation

A set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged without conflicts into a supertree. In this paper, we study the polynomial-time approximability of two related optimization problems called the maximum rooted triplets consistency problem (MaxRTC) and the minimum rooted triplets inconsistency problem (MinRTI) in which the input is a set R of rooted triplets, and where the objectives are to find a largest cardinality subset of R which is consistent and a smallest cardinality subset of R whose removal from R results in a consistent set, respectively. We first show that a simple modification to Wu’s Best-Pair-Merge-First heuristic [25] results in a bottom-up-based 3-approximation for MaxRTC. We then demonstrate how any approximation algorithm for MinRTI could be used to approximate MaxRTC, and thus obtain the first polynomial-time approximation algorithm for MaxRTC with approximation ratio smaller than 3. Next, we prove that for a set of rooted triplets generated under a uniform random model, the maximum fraction of triplets which can be consistent with any tree is approximately one third, and then provide a deterministic construction of a triplet set having a similar property which is subsequently used to prove that both MaxRTC and MinRTI are NP-hard even if restricted to minimally dense instances. Finally, we prove that MinRTI cannot be approximated within a ratio of (log n) in polynomial time, unless P = NP.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

51c.pdf

Access type

openaccess

Size

182.75 KB

Format

Adobe PDF

Checksum (MD5)

44e87ee3535f21f5594c0c423cc150e3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés