Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Practical Off-chip Meta-data for Temporal Memory Streaming
 
conference paper

Practical Off-chip Meta-data for Temporal Memory Streaming

Wenisch, Thomas F.
•
Ferdman, Michael
•
Ailamaki, Anastassia
Show more
2009
Proceedings of the 15th International Symposium on High-Performance Computer Architecture
15th International Symposium on High-Performance Computer Architecture

Prior research demonstrates that temporal memory streaming and related address-correlating prefetchers improve performance of commercial server workloads though increased memory level parallelism. Unfortunately, these prefetchers require large on-chip meta-data storage, making previously- proposed designs impractical. Hence, to improve practicality, researchers have sought ways to enable timely prefetch while locating meta-data entirely off-chip. Unfortunately, current solutions for off-chip meta-data increase memory traffic by over a factor of three. We observe three requirements to store meta-data off chip: minimal off-chip lookup latency, bandwidthefficient meta-data updates, and off-chip lookup amortized over many prefetches. In this work, we show: (1) minimal off-chip meta-data lookup latency can be achieved through a hardware-managed main memory hash table, (2) bandwidth-efficient updates can be performed through probabilistic sampling of meta-data updates, and (3) off-chip lookup costs can be amortized by organizing meta-data to allow a single lookup to yield long prefetch sequences. Using these techniques, we develop Sampled Temporal Memory Streaming (STMS), a practical address-correlating prefetcher that keeps predictor meta-data in main memory while achieving 90% of the performance potential of idealized on-chip meta-data storage.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

stms_hpca09.pdf

Access type

openaccess

Size

433.78 KB

Format

Adobe PDF

Checksum (MD5)

d0e4f439d5d29dfc0975b8e6d35e3f34

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés