Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Numerical Analysis of Flow Phenomena Related to the Unstable Energy-Discharge Characteristic of a Pump-Turbine in Pump Mode
 
conference paper

Numerical Analysis of Flow Phenomena Related to the Unstable Energy-Discharge Characteristic of a Pump-Turbine in Pump Mode

Braun, Olivier
•
Kueny, Jean-Louis  
•
Avellan, François  
2005
Proceedings of the ASME Fluids Engineering Division Summer Conference
ASME 2005 Fluids Engineering Division Summer Meeting

Regions of positive slope in the pressure-discharge characteristics are one of the major concerns in design and operation of centrifugal pumps, as they are limiting the admissible operating range to values above the critical discharge. The industrial pump turbine of specific speed ν=0.42 (nq=66 min-1) proposed as QNET-CFD test case TA6-04 shows a marked saddle in the energy-discharge characteristic associated to a sudden drop of efficiency versus discharge at part load. The pump-turbine consists of a shrouded impeller with five blades, a diffuser with 22 guide and stay vanes and a spiral casing. CFD flow simulations on a reduced model were carried out with a finite volume Navier-Stokes code (CFX-5.7) using block- tructured hexahedral meshes and the Menter-SST Turbulence model. Control of numerical quality has been performed. Reduced models with relatively low computational effort (mixing plane interface) already permit to capture the drop in efficiency and energy coefficient to analyze the flow phenomena inducing the drop of the energy coefficient Ψ that occurs at partial discharge. Analysis of local flow patterns and energy and velocity distributions at the rotor-stator interface that are related to the onset of recirculation are presented.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FEDSM2005-77015.pdf

Access type

openaccess

Size

383.43 KB

Format

Adobe PDF

Checksum (MD5)

53cadbb4ca89f2780a0f8fd828e73f72

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés