An experimental work has been carried out to investigate the dynamic behavior and the intensity of erosive partial cavitation on a 2-D hydrofoil. Both sheet (stable) and cloud (unstable) cavitation have been tested in a cavitation tunnel for various free stream velocities. Special attention has been given to validate the use of acceleration transducers for studying the physical process. In particular, the modulation in amplitude of the cavitation induced vibrations in a high frequency band has allowed us to determine the shedding frequency and the relative intensity of the collapse process for each testing condition. Regarding the cavity dynamics, a typical Strouhal value based on its length of about 0.28 has been found for cloud cavitation; meanwhile, for sheet cavitation, it presents a value of about 0.16. Furthermore, the level of the vibration modulation in the band from 45 kHz to 50 kHz for cloud cavitation shows a power law dependency on the free stream velocity as well as a good correlation with the pitting rate measured on stainless steel samples mounted on the hydrofoil.