Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Classification of magnetic resonance images from rabbit renal perfusion
 
research article

Classification of magnetic resonance images from rabbit renal perfusion

Gujral, Paman
•
Amrhein, Michael  
•
Bonvin, Dominique  
Show more
2009
Chemometrics and Intelligent Laboratory

The feasibility of using chemometric techniques for the automatic detection of whether a rabbit kidney is pathological or not is studied. Sequential images of the kidney are acquired using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with contrast agent injection. A segmentation approach based upon principal component analysis (PCA) is used to separate out the cortex from the rest of the kidney including the medulla, the renal pelvic, and the background. Two classifiers (Soft Independent Method of Class Analogy, SIMCA; Partial Least Squares Discriminant Analysis, PLS-DA) are tested for various types of data pre-treatment including segmentation, feature extraction, centering, autoscaling, standardnormal variate transformation, Savitsky-Golay smoothing, and normalization. It is shown that (i) the renal cortex contains more discriminating information on kidney perfusion changes than the whole kidney, and (ii) the PLS-DA classifiers outperform the SIMCA classifiers. PLS-DA, preceded by an automated PCA- based segmentation of kidney anatomical regions, correctly classified all kidneys and constitutes a classification tool of the renal function that can be useful for the clinical diagnosis of renovascular diseases.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PG_rabbits.pdf

Access type

restricted

Size

1.58 MB

Format

Adobe PDF

Checksum (MD5)

87624688d244095a95362c9c5af71b67

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés