Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning collaborative manipulation tasks by demonstration using a haptic interface
 
conference paper

Learning collaborative manipulation tasks by demonstration using a haptic interface

Calinon, Sylvain  
•
Evrard, Paul
•
Gribovskaya, Elena  
Show more
2009
Proceedings of the International Conference on Advanced Robotics (ICAR)
International Conference on Advanced Robotics (ICAR)

This paper presents a method by which a robot can learn through observation to perform a collaborative manipulation task, namely lifting an object. The task is first demonstrated by a user controlling the robot's hand via a haptic interface. Learning extracts statistical redundancies in the examples provided during training by using Gaussian Mixture Regression and Hidden Markov Model. Haptic communication reflects more than pure dynamic information on the task, and includes communication patterns, which result from the two users constantly adapting their hand motion to coordinate in time and space their respective motions. We show that the proposed statistical model can efficiently encapsulate typical communication patterns across different dyads of users, that are stereotypical of collaborative behaviours between humans and robots. The proposed learning approach is generative and can be used to drive the robot's retrieval of the task by ensuring a faithful reproduction of the overall dynamics of the task, namely by reproducing the force patterns for both lift the object and adapt to the human user's hand motion. This work shows the potential that teleoperation holds for transmitting both dynamic and communicative information on the task, which classical methods for programming by demonstration have traditionally overlooked.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ICAR2009_Paper194.pdf

Access type

openaccess

Size

1.1 MB

Format

Adobe PDF

Checksum (MD5)

86b43abd31880f5ac8d7654e4d9c4369

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés