Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection

Poly(dimethylsiloxane) (PDMS) appeared recently as a material of choice for rapid and accurate replication of polymer-based microfluidic networks. However, due to its hydrophobicity, the surface strongly interacts with apolar analytes or species containing apolar domains, resulting in significant uncontrolled adsorption on channel walls. This contribution describes the application and characterization of a PDMS surface treatment that considerably decreases adsorption of low and high molecular mass substances to channel walls while maintaining a modest cathodic electroosmotic flow. Channels are modified with a three-layer biotin-neutravidin sandwich coating, made of biotinylated IgG, neutravidin, and biotinylated dextran. By replacing biotinylated dextran with any biotinylated reagent, the modified surface can be readily patterned with biochemical probes, such as antibodies. Combination of probe immobilization chemistry with low nonspecific binding enables affinity binding assays within channel networks. The example of an electrokinetic driven, heterogeneous immunoreaction for human IgG is described.


Published in:
Analytical Chemistry, 73, 17, 4181-4189
Year:
2001
ISSN:
00032700
Note:
259
Laboratories:




 Record created 2009-05-12, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)