Action Filename Description Size Access License Resource Version
Show more files...


A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high frequency bores and low frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.