Radial elasticity of multiwalled carbon nanotubes

We report an experimental and a theoretical study of the radial elasticity of multiwalled carbon nanotubes as a function of external radius. We use atomic force microscopy and apply small indentation amplitudes in order to stay in the linear elasticity regime. The number of layers for a given tube radius is inferred from transmission electron microscopy, revealing constant ratios of external to internal radii. This enables a comparison with molecular dynamics results, which also shed some light onto the applicability of Hertz theory in this context. Using this theory, we find a radial Young modulus strongly decreasing with increasing radius and reaching an asymptotic value of 30± 10 GPa.


Published in:
Physical Review Letters, 94, 17
Year:
2005
ISSN:
0031-9007
ISBN:
0031-9007
Keywords:
Other identifiers:
Laboratories:




 Record created 2009-04-14, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)