Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Statistical sampling of microarchitecture simulation
 
research article

Statistical sampling of microarchitecture simulation

Wunderlich, Roland E.
•
Wenisch, Thomas F.
•
Falsafi, Babak  
Show more
2006
ACM Transactions on Modeling and Computer Simulation

Current software-based micro architecture simulators are many orders of magnitude slower than the hardware they simulate. Hence, most microarchitecture design studies draw their conclusions from drastically truncated benchmark simulations that are often inaccurate and misleading. This article presents the Sampling Microarchitecture Simulation (SMARTS) framework as an approach to enable fast and accurate performance measurements of full-length benchmarks. SMARTS accelerates simulation by selectively measuring in detail only an appropriate benchmark subset. SMARTS prescribes a statistically sound procedure for configuring a systematic sampling simulation run to achieve a desired quantifiable confidence in estimates. Analysis of the SPEC CPU2000 benchmark suite shows that CPI and energy per instruction (EPI) can be estimated to within ±3% with 99.7% confidence by measuring fewer than 50 million instructions per benchmark. In practice, inaccuracy in microarchitectural state initialization introduces an additional uncertainty which we empirically bound to ∼2% for the tested benchmarks. Our implementation of SMARTS achieves an actual average error of only 0.64% on CPI and 0.59% on EPI for the tested benchmarks, running with average speedups of 35 and 60 over detailed simulation of 8-way and 16-way out-of-order processors, respectively. © 2006 ACM.

  • Details
  • Metrics
Type
research article
DOI
10.1145/1147224.1147225
Author(s)
Wunderlich, Roland E.
Wenisch, Thomas F.
Falsafi, Babak  
Hoe, James C.
Date Issued

2006

Published in
ACM Transactions on Modeling and Computer Simulation
Volume

16

Issue

3

Start page

197

End page

224

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
PARSA  
Available on Infoscience
April 6, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/36960
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés