Illuminant estimation and detection using near infrared

Digital camera sensors are sensitive to wavelengths ranging from the ultraviolet (200-400nm) to the near-infrared (700-100nm) bands. This range is, however, reduced because the aim of photographic cameras is to capture and reproduce the visible spectrum (400-700nm) only. Ultraviolet radiation is filtered out by the optical elements of the camera, while a specifically designed "hot-mirror" is placed in front of the sensor to prevent near-infrared contamination of the visible image. We propose that near-infrared data can actually prove remarkably useful in colour constancy, to estimate the incident illumination as well as providing to detect the location of different illuminants in a multiply lit scene. Looking at common illuminants spectral power distribution show that very strong differences exist between the near-infrared and visible bands, e.g., incandescent illumination peaks in the near-infrared while fluorescent sources are mostly confined to the visible band. We show that illuminants can be estimated by simply looking at the ratios of two images: a standard RGB image and a near-infrared only image. As the differences between illuminants are amplified in the near-infrared, this estimation proves to be more reliable than using only the visible band. Furthermore, in most multiple illumination situations, one of the light will be predominantly near-infrared emitting (e.g., flash, incandescent) while the other will be mostly visible emitting (e.g., fluorescent, skylight). Using near-infrared and RGB image ratios allow us to accurately pinpoint the location of diverse illuminant and recover a lighting map.

Published in:
IS&T/SPIE Electronic Imaging, Digital Photography V, 7250
Presented at:
IS&T/SPIE Electronic Imaging: Digital Photography V, San Jose, USA, January 18-22, 2009

 Record created 2009-01-27, last modified 2018-03-17

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)