Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Wavelets on Graphs via Spectral Graph Theory
 
conference poster not in proceedings

Wavelets on Graphs via Spectral Graph Theory

Hammond, David K
•
Vandergheynst, Pierre  
•
Gribonval, Rémi
2008
Workshop on Sparsity and its application to large inverse problems

We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite graph. We define a notion of scaling using the graph analogue of the Fourier domain, namely the space of eigenfunctions forming the spectral decomposition of the discrete graph Laplacian $\L$. Given an arbitrary measurable function g, the spectral decomposition allows one to define the operator $T_g=g(\L)$. Scaling by $t$ may then be defined by $T_g^t = g(t\L)$. Our graph wavelets $W_{t,j}$ at scale $t$ and $j$ are produced by localizing this operator to the vertex $j$ by $W_{t,j}=g(t\L)\delta_j$, where $\delta_j$ is the indicator function for the vertex $j$. We explore the localization properties of the wavelets in the limit of fine scales, and show that the scale can be discretized to yield a frame. We give an example of this construction applied to a cortical connection graph, yielding "cortical graph wavelets".

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

spectral_graph_wavelets_hammond_poster.pdf

Access type

restricted

Size

4.68 MB

Format

Adobe PDF

Checksum (MD5)

cee6a0f785f4e41a910e3494bc504286

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés