Impact of Materials and Design on Solid Oxide Fuel Cell Stack Operation

Planar SOFC stack technology based on a unique concept (SOFConnex™) uses structured gas distribution layers between unprofiled metal sheet interconnects and thin Ni-YSZ anode supported electrolyte cells. The layers are flexible both in material and designand allow to implement new configurations relatively simply; manifolding can be internal, external, or combined. Together with thin stack components, independent of the supplier, the SOFConnex™ stacking approach allows compact planar assembly with low cost potential and adequate power density. Different cell and flow designs have been realized. With a basic flow configuration, short stacks (50 cm2 cell active area) were assembled and tested, power density at 800°C reaching 0.5 W/cm2 at 0.7 V average cell voltage (1.5 kWe /L, 0.36 cm2 area specific resistance), for 65% fuel utilization and 35% lower heating value electrical efficiency. Short stacks were thermally cycled and operated with both hydrogen and syngas. Degradation was essentially Ohmic(confirmed from impedance spectroscopy on stacks) and at first mainly due to the cathode-electrolyte interfacial reaction, performance loss was subsequently strongly reduced after cathode replacement. Using multiple voltage probes with additional interconnects allowed to separately monitor current collection losses during polarization. With an improved design in terms of sealing, postcombustion control and flow field, stacks up to 1 kWe have been operated.

Published in:
Journal of Fuel Cell Science and Technology, 5, 3, art. no 031003
Keynote presentation
Other identifiers:

Note: The status of this file is: EPFL only

 Record created 2009-01-09, last modified 2020-10-25

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)