Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Multi-Agent Adaptive Mechanism Leading to Optimal Real-Time Load Sharing
 
conference paper not in proceedings

Multi-Agent Adaptive Mechanism Leading to Optimal Real-Time Load Sharing

Gallay, Olivier
•
Hongler, Max-Olivier  
2009
MATHMOD 2009, Vienna, 2009

We propose a new real-time load sharing policy (LSP), which optimally dispatches the incoming workload according to the current availability of the operators. Optimality means here that the global service permanently requires the engagement of a minimum number of operators while still respecting due dates. To cope with inherent randomness due to operator failures as well as non-stationary fluctuating incoming workload, any optimal LSP rule will necessarily rely on real-time updating mechanisms. Accordingly, a permanent monitoring of the traffic workload, of the queue contents and of other relevant dynamic state variables is often realized by a central workload dispatcher. In this contribution, we abandon such a "classical" approach and we propose a fully decentralized algorithm which fulfils the optimal load sharing process. The underlying decentralized decisions rely on a "smart tasks" paradigm in which each incoming task is endowed with an autonomous routing decision mechanism. Incoming jobs hence possess, in this paper, the status of autonomous agents endowed with "local intelligence". Stigmergic interactions between these agents cause the optimal LSP to emerge. We emphasize that beside a manifest strict relevance for applications, our class of models is analytically tractable, a rather uncommon feature when dealing with multi-agent dynamics and complex adaptive logistics systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Gallay_Hongler_MATHMOD_2009.pdf

Access type

openaccess

Size

625.38 KB

Format

Adobe PDF

Checksum (MD5)

d0fac49af950ad2e880d1a4ecfa3f90b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés