000128756 001__ 128756
000128756 005__ 20181203021316.0
000128756 0247_ $$2doi$$a10.1155/IMRN.2005.1331
000128756 037__ $$aARTICLE
000128756 245__ $$aEquivariant embeddings of trees into hyperbolic spaces
000128756 269__ $$a2005
000128756 260__ $$c2005
000128756 336__ $$aJournal Articles
000128756 520__ $$aWe study isometric actions of tree automorphism groups on the infinite-dimensional hyperbolic spaces. On the one hand, we exhibit a general one-parameter family of such representations and analyse the corresponding equivariant embeddings of the trees, showing that they are convex-cocompact and asymptotically isometric. On the other hand, focusing on the case of sufficiently transitive groups of automorphisms of locally finite trees, we classify completely all irreducible representations by isometries of hyperbolic spaces. It turns out that in this case our one-parameter family exhausts all non-elementary representations.
000128756 700__ $$aBurger, Marc
000128756 700__ $$aIozzi, Alessandra
000128756 700__ $$g181579$$aMonod, Nicolas$$0243578
000128756 773__ $$j22$$tInternational Mathematics Research Notices$$q1331-1369
000128756 909C0 $$xU11822$$0252235$$pEGG
000128756 909CO $$pSB$$particle$$ooai:infoscience.tind.io:128756
000128756 937__ $$aEGG-ARTICLE-2008-008
000128756 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000128756 980__ $$aARTICLE