Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods
 
research article

Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods

Marbach, Daniel
•
Schaffter, Thomas  
•
Mattiussi, Claudio  
Show more
2009
Journal of Computational Biology

Reverse engineering methods are typically first tested on simulated data from in silico networks, for systematic and efficient performance assessment, before an application to real biological networks. In this paper we present a method for generating biologically plausible in silico networks, which allow realistic performance assessment of network inference algorithms. Instead of using random graph models, which are known to only partly capture the structural properties of biological networks, we generate network structures by extracting modules from known biological interaction networks. Using the yeast transcriptional regulatory network as a test case, we show that extracted modules have a biologically plausible connectivity because they preserve functional and structural properties of the original network. Our method was selected to generate the "gold standard" networks for the gene network reverse engineering challenge of the third DREAM conference (Dialogue on Reverse Engineering Assessment and Methods, Cambridge, MA, 2008).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Marbach 2009 J Comput Biol.pdf

Access type

openaccess

Size

324.71 KB

Format

Adobe PDF

Checksum (MD5)

d68a44d54e3ba7ea8795e78d050a5b60

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés