Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells

We present a model for the self-organized formation of place cells, head-direction cells, and spatial-view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli. The model comprises a hierarchy of Slow Feature Analysis (SFA) nodes, which were recently shown to reproduce many properties of complex cells in the early visual system [1]. The system extracts a distributed grid-like representation of position and orientation, which is transcoded into a localized place-field, head-direction, or view representation, by sparse coding. The type of cells that develops depends solely on the relevant input statistics, i.e., the movement pattern of the simulated animal. The numerical simulations are complemented by a mathematical analysis that allows us to accurately predict the output of the top SFA layer.


Published in:
PLoS Computational Biology, 3, 8, 1605-1622
Year:
2007
Publisher:
Public Library of Science
ISSN:
1553-734X
Laboratories:




 Record created 2008-09-17, last modified 2018-09-13

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)