Bayesian Feature Selection Applied In a P300 Brain- Computer Interface

Feature selection is a machine learning technique that has many interesting applications in the area of brain- computer interfaces (BCIs). Here we show how automatic relevance determination (ARD), which is a Bayesian feature selection technique, can be applied in a BCI system. We present an computationally efficient algorithm that uses ARD to com- pute sparse linear discriminants. The algorithm is tested with data recorded in a P300 BCI and with P300 data from the BCI competition 2004. The achieved classification ac- curacy is competitive with the accuracy achievable with a support vector machine (SVM). At the same time the compu- tational complexity of the presented algorithm is much lower than that of the SVM. Moreover, it is shown how visualiza- tion of the computed discriminant vectors allows to gain in- sights about the neurophysiological mechanisms underlying the P300 paradigm.

Published in:
proceedings of 16th European Signal Processing Conference (EUSIPCO 2008)
Presented at:
16th European Signal Processing Conference, Lausanne, August 25-29, 2008
Lausanne , Switzerland

 Record created 2008-06-06, last modified 2018-01-28

External links:
Download fulltextURL
Download fulltextn/a
Rate this document:

Rate this document:
(Not yet reviewed)