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ON THE MODULI SPACE OF SINGULAR EUCLIDEAN

SURFACES

MARC TROYANOV

Abstract. The goal of this paper is to develop some aspects of the defor-
mation theory of piecewise flat structures on surfaces and use this theory to
construct new geometric structures on the moduli space of Riemann surfaces.
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2 MARC TROYANOV

Introduction

The Teichmüller space of a punctured surface is the space of hyperbolic metrics
with cusps up to isotopy on that surface, however, it can also be seen as the space
of flat metrics with conical singularities of prescribed angles at the punctures up to
isotopy and rescaling. The aim of the present paper is to use this fact and show how
the theory of piecewise flat surfaces and their deformations leads to new geometric
structures in Teichmüller theory.

In the first section, which is rather elementary, we describe the geometry of piece-
wise flat surfaces. The second section describes the topology of punctured surfaces
and their diffeomorphism groups. In the third section we discuss the representation
space of a finitely generated group π into the group SE(2) of rigid motions in the
euclidean plane. In the last two sections, we apply the previous results to construct
a new geometric structure on the Riemann moduli space Mg,n of a surface Σ of
genus g with n punctures. More specifically, we show that this moduli space is a
good orbifold1 which admits a family of geometric structures locally modeled on
the homogeneous spaces Ξ = T2g × CP

2g+n−3.

We now discuss our main result. We first define a punctured surface Σg,n of type
(g, n) to be a fixed connected closed orientable surface S of genus g together with a
distinguished set of n pairwise distinct points p1, p2, ..., pn ∈ Σg,n. The Teichmüller
space Tg,n of Σg,n is the set of conformal structures on Σg,n modulo isotopies fixing
the punctures (see section 4 for a precise definition). This space is a real analytic
variety in a natural way; if 2g − 2 + n > 0, then it is isomorphic to R6g−6+2n. The
group of orientation-preserving isotopy classes of diffeomorphisms of Σg,n fixing the
punctures is called the pure mapping class group and denoted by PModg,n. It acts
in a natural way on the Teichmüller space Tg,n.

We are now in a position to state the main result:

Theorem Given a punctured surface Σg,n such that 2g + n − 2 > 0, we can
construct a group homomorphism

Φ : PModg,n → G = Aut(T2g) × PGL2g+n−2(C)

and a Φ-equivariant local homeomorphism

H : Tg,n → Ξ = T
2g × CP

2g+n−3.

To say that H is Φ-equivariant means that H(Aµ) = Φ(A) · H(µ) for all A ∈
PModg,n and µ ∈ Tg,n.

The pair (H,Φ) depends on n parameters β1, β2, . . . , βn ∈ (−1,∞) such that∑n
j=1 βj = 2g − 2 and no βi ∈ Z.

The moduli space Mg,n of Σg,n is the set of conformal structures on Σg,n modulo
diffeomorphisms fixing the punctures. It is the quotient of the Teichmüller space
by the pure mapping class group of Σg,n; in other words Mg,n is a good orbifold
whose universal cover is Tg,n and fundamental group is PModg,n. In the geometric
language of (G,X)-strucures on manifolds and orbifolds (see [7, 9, 14, 30]), this

1Recall that an orbifold is a space which is locally the quotient of a manifold by a finite
group. A good orbifold is globally the quotient of a manifold by a group acting properly and
discontinuously (but in general not freely).
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theorem says that we have constructed a family of geometric structures on the
orbifold Mg,n which is modeled on the homogeneous space Ξ = T2g × CP

2g+n−3.
This family is parametrized by the β′

is.

The composition of the map H in the Theorem with the projection on the torus
T2g gives us a map ρ : Tg,n → T2g called the character map. It was proved by W.A.
Veech that this map is a real analytic submersion. Its fibers describe a foliation
whose leaves carry a geometric structure locally modelled on the complex projective
space CP

2g+n−3, see [36] for proofs of these facts and a discussion of other related
geometric structures on Tg,n.

The proof of this theorem is based on the following strategy: we first show that
the Teichmüller space can be seen as a deformation space of flat metrics on Σg,n

having conical singularities of prescribed angles at the punctures. We associate
to such a metric a homomorphism, called the holonomy of the metric, from the
fundamental group of the surface to the group SE(2) of direct isometries of the
euclidean plane. We then show that such a homomorphism can be seen as a point
in the variety Ξ. In brief, H : Tg,n → Ξ maps the isotopy class of a singular flat
metric to its holonomy representation.

In the special case of the punctured sphere, a stronger form of this theorem has
been obtained by Deligne and Mostow [10] using some techniques from algebraic
geometry and by Thurston [31] using an approach closer to ours.

To conclude this introduction, let us stress that the importance of piecewise flat
metrics in Teichmüller theory is illustrated by the large number of papers dedicated
to this subject. In addition to the work of Veech and Thurston already quoted, let
us mention the contributions of Rivin [27], Bowditch [3], Epstein and Penner [11]
to name a few. Piecewise euclidean metrics also appear in quantum gravity and in
topological quantum field theory, see [2, 8] and the references therein. Although
the present paper starts with elementary considerations, the reader ought not to
consider it as a global survey of this vast subject.

Acknowledgments. I would like to thank Babak Modami and François Fillas-
tre for having carefully read the manuscript and for their comments. Finally, this
paper is dedicated to the memory of Michel Matthey.

1. Piecewise flat surfaces

1.1. Euclidean triangulation on a surface. A piecewise flat surface is a metric
space obtained by properly gluing a stock of euclidean triangles in such a way that
whenever two triangles meet along an edge, they are glued by an isometry along
that edge. More precisely:

Definition 1.1. A euclidean triangulation of a surface Σ is a set of pairs T =
{(Tα, fα)}α∈A where each Tα is a compact subset of Σ and fα : Tα→R2 is a home-
omorphism onto a non degenerate triangle fα(Tα) in the euclidean plane R2. A
subset e of Tα is an edge if fα(e) is an edge of fα(Tα) and a point p of Tα is a
vertex if its image under fα is a vertex of fα(Tα).

The eucliden triangulation T is subject to the following conditions:

i) The triangles cover the surface: Σ =
⋃

α Tα.
ii) If α 6= β, then the intersection Tα ∩Tβ is either empty, or an edge or a vertex.
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iii) If Tα ∩Tβ 6= ∅, then there is an element gαβ ∈ E(2) (= the group of isometries
of the euclidean plane) such that fα = gαβfβ on that intersection.

An element (Tα, fα) ∈ T is called a triangle or a 2-simplex of the triangulations,
we often just denote it by Tα. The vertices and edges are called 0- and 1-simplices
respectively.

Two euclidean triangulations T = {(Tα, fα)}α∈A and T ′ = {(Tα, f
′

α)}α∈A of the
same surface Σ are considered to be equal if they have the same simplices and, for
any α ∈ A, there is an isometry gα ∈ E(2) such that f ′

α = gαfα.

Definition 1.2. A piecewise flat surface (Σ, T ) is a surface together with a eu-
clidean triangulation.

A piecewise flat surface (Σ, T ) comes with a number of additional structures.
In particular there is a well defined area measure which coincides with the 2-
dimensional Lesbegue measure on each euclidean triangle T . We can also define
the length ℓ(c) of an arbitrary curve c : [0, 1] → Σ by the following axioms:

(i) if c is contained in a triangle T of T , then ℓ(c) is the euclidean length.
(ii) ℓ is additive: if c is the concatenation of two curves c1c2, then ℓ(c) = ℓ(c1) +

ℓ(c2).

The piecewise flat surface is thus a length space (see [6] for this notion). If the
surface is connected, then it is also a metric space for the distance given by the
infimum of the lengths of all curves joining two given points.

There is one more structure, called the singularity order and which is defined
as the angular excess at the vertices counted in number of turns. It tells us how
singular each vertex is compared to an ordinary point; the precise definition is the
following:

Definition 1.3. The vertex p ∈ Σ is said to be a conical point of total angle θ if

θ =

k∑

j=1

ϕj

where ϕ1, . . . , ϕk are the angles of all the triangles in T which are incident to p.
The singularity order β(p) of a vertex p is the angular excess at p measured in
number of turns:

β(p) =
θ

2π
− 1.

We extend the function β to all points of Σ by setting β(x) = 0 if x ∈ Σ is not a
vertex. The point x is then termed singular if β(x) 6= 0 (i.e. if θ 6= 2π) and regular
otherwise.

Proposition 1.4 (Gauss-Bonnet Formula). For any euclidean triangulation on a
compact surface without boundary Σ, we have

(1.1) χ(Σ) +
∑

x∈Σ

β(x) = 0 ,

where χ(Σ) is the Euler characteristic of the surface.

The proof is a direct counting argument based on the definition of the Euler
characteristic and the fact that the three internal angles of a euclidean triangle add
up to π, see [32].
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1.2. The universal branched cover of a piecewise flat surface. If (Σ, T ) is a
piecewise flat surface, we denote by Σ′ = Σ \ {p1, ..., pn} the open surface obtained
by removing the singular vertices p1, ..., pn ∈ Σ.

Definition 1.5. A path c : [0, 1] → Σ is admissible if it has finitely many inter-
sections with the edges of the triangulation and if c(s) ∈ Σ′ for any 0 < s < 1. A
homotopy ct is an admissible homotopy if s 7→ ct(s) ∈ Σ is an admissible path for
any 0 ≤ t ≤ 1.

Let us choose a fixed triangle T0 ∈ T and call it home (or the base triangle). We
also choose a base point x0 in the interior of T0.

Definition 1.6. The universal branched cover of (Σ, T ) is the euclidean two-

dimensional complex T̂ obtained as follows: a k-simplex σ̂ of T̂ , where k = 0, 1
or 2, is a pair (σ, [c]) where σ is a k-simplex of T and [c] is an admissible homo-
topy class of paths joining T0 to a point in σ.

The universal branched cover T̂ is a simplicial complex (which is not locally

finite) and there is an obvious simplicial map T̂ → T sending (σ, [c]) to σ.

We denote by Σ̂ the geometric realization of T̂ . This is a triangulated topological

space and it comes with a continuous surjective map P : Σ̂ → Σ sending each

simplex of T̂ homeomorphically onto the corresponding simplex in T . We turn Σ̂
into a metric space (in fact a length space) by requiring P to be an isometry on

each simplex (concretely, we give to each simplex σ̂ = (σ, [c]) in T̂ the geometry of
the euclidean simplex σ in T ).

Another way to understand Σ̂ is the following: let Σ̃′ be the universal cover of

Σ′. It is naturally a length space (in fact a flat Riemannian surface) and Σ̂ is its
metric completion.

1.3. The development of a piecewise flat surface.

Definition 1.7. An edge of the piecewise flat surface (Σ, T ) is said to be interior
if it is not contained in the boundary of Σ. The hinge of an interior edge e is the
unique pair of triangles T1, T2 ∈ T which are incident with e.

Given an interior edge e with hinge (T1, T2) and an isometry f1 : T1 → R2, there
exists a unique isometry f2 : T2 → R2 such that f1(T1) and f2(T2) have disjoint
interiors and f1(e) = f2(e). By juxtaposing these maps, we obtain a map

fe = f1 ∪ f2 : T1 ∪ T2 → R
2

which is an isometry of the hinge onto a quadrilateral in the euclidean plane. The
map fe just described is called an unfolding of the hinge. One also says that f2 is
the continuation of f1 across the edge e.

The notions of hinge, unfolding and continuation of an isometry across an edge

are similarly defined on the universal branch cover Σ̂.

Proposition 1.8. Let (Σ, T ) be a piecewise flat surface with home triangle T0 and
choose an isometry f0 from T0 onto a triangle in R2. Then there exists a unique

map f : Σ̂ → R2 such that f coincides with f0 on T0 and f maps every hinge onto
a quadrilateral in R2.
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Proof. Let x̂ be a point in Σ̂. This point belongs to a simplex σ̂ = (σ, [c]) in T̂ .
Choose an admissible arc c connecting the base point x0 ∈ T0 to σ. Because c is
admissible, it crosses only finitely many edges e1, e2, ..., em in that order (repetitions
may occur). We associate to the path c a sequence of triangles T1, T2, ..., Tm ∈ T
by requiring that (T0, T1) be the hinge of e1, (T1, T2) be the hinge of e2 and so on.
We then define fj : Tj → R2 to be the continuation of fj−1 across the edge ej (for
1 ≤ j ≤ m) and we finally set f(x̂) = fm(P (x̂). The point f(x̂) ∈ R2 only depends
on the homotopy class [c] and not on the representative path c.

It is clear from the construction that f : Σ̂ → R
2 maps every hinge onto a

quadrilateral in R2. Since f extends f0, the proof is complete.
�

Definition 1.9. The map f : Σ̂ → R
2 is the development map of the piecewise

flat surface.

If f ′ : Σ̂ → R2 is another development, then, clearly, f ′ = g◦f where g : R2 → R2

is the unique isometry of the plane such that g(f(T0)) = f ′(T0).

When Σ is the boundary surface of a convex polyhedron in R3, the development
is a very concrete operation. It is obtained by first placing the initial face (home)
somewhere on the plane and then rolling without slipping the polyhedron, face
after face, following an admissible path. Observe in particular that we can move
our polyhedron toward any point in the plane. This is a general fact:

Proposition 1.10. Let Σ be a compact piecewise flat surface without boundary.

Then any development f : Σ̂ → R2 is surjective.

Proof. Observe first that f is a closed map (because it is an isometry on each

triangle). Suppose that R2 \f(Σ̂) 6= ∅, then this set is open and we can find a point

y ∈ R2 which lies on the boundary of f(Σ̂). Because f is closed, we can find x̂ ∈ Σ̂
with f(x̂) = y. Let x = P (x̂) ∈ Σ. This point cannot be in the interior of any
triangle of the triangulation, thus x lies on an edge e. Moving slightly the point y
if necessary, we can assume that x lies in the interior e (i.e. that x is not a vertex).

Since Σ has no boundary, e is an interior edge; the developing map f sends the
hinge of e onto a quadrilateral Q in R2. The interior of e is sent in the interior of

Q ⊂ f(Σ̂). This contradicts the point y lying on the boundary of f(Σ̂). �

1.4. The holonomy of a piecewise flat surface. The set of all admissible ho-
motopy classes in the piecewise flat surface (Σ, T ) which start and end at the base
point x0 form a group π with respect to the concatenation. This group coincides
with the fundamental group π1(Σ

′, x0).

If [a] ∈ π and (σ, [b]) ∈ T̃ , then (σ, [ba]) is well defined, and this gives a simplicial

action of π on T̃ .
Corresponding to this simplicial action, there is an action of π on Σ̂ by isometries;

the orbits space of this action coincides with the surface itself. i.e. Σ = Σ̂/π.

If f : Σ̂ → R2 is a development map of (Σ, T ) and γ = [c] ∈ π, then there is a
unique isometry g : R

2 → R
2 such that the g(f(T0)) = f(T0, [c]). We denote this

isometry by g = ϕ(γ).

Proposition 1.11. The map ϕ : π → E(2) (the group of isometries of the euclidean
plane) is a group homomorphism.
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Proof. This easily follows from the construction of the development map.
�

Definition 1.12. The homomorphism ϕ : π → E(2) is called the holonomy asso-
ciated to the development f .

Proposition 1.13. If Σ is compact without boundary, then the group
H = ϕ(π) ⊂ E(2) has no bounded orbit (in particular it has no fixed point).

An obvious but important consequence is the fact that H is not conjugate to a
subgroup of O(2).

Proof. Suppose that there is a point y ∈ R2 such that H · y is bounded. Since

the development map is surjective, there exists a point x̂ ∈ Σ̂ such that f(x̂) = y.
Observe that H · y = f(π · x̂). Any point in the surface Σ can be connected to

x = P (x̂) by a path of length at most D = diam(Σ), hence any point in Σ̂ can be
connected to a point in the orbit π · x̂ by a path of length at most D.

Since f preserves the length of all paths, it follows that any point in the image

f(Σ̂) can be connected to a point in the orbit H · y by a path of length at most D.
The last assertion contradicts the surjectivity of f .

�

Recall that the development of a piecewise flat surface is not unique, it depends
on the choice of an isometry of the home triangle into R2. However the holonomy
is well defined up to conjugacy:

Proposition 1.14. Let f, f ′ : Σ̂ → R2 be two development maps of the piecewise
flat surface (Σ, T ), and let ϕ,ϕ′ : π → E(2) be the corresponding holonomies. Then
ϕ′(γ) = gϕ(γ)g−1 where g ∈ E(2) is the unique isometry such that f ′ = g ◦ f .

Proof. The holonomy is defined by the condition f(T0, γ) = ϕ(γ)(f(T0)), hence

ϕ′(γ)(f(T0)) = f ′(T0, γ) = g ◦ f(T0, γ) = g ◦ ϕ(γ)(f(T0))

= g ◦ ϕ(γ) ◦ g−1(f ′(T0)).

�

1.5. The development near a singularity. The previous notions can be clearly
visualized if one restricts one’s attention to a simply connected region Ω ⊂ Σ which
is a union of triangles and which contains exactly one singular vertex p of order
β = β(p) 6= 0.

Suppose that the base point x0 sits in Ω and choose a loop c in Ω′ = Ω\{p}, based
at x0 and surrounding the point p once (so that [c] is a generator of π1(Ω

′, x0) ∼= Z).

Choose a connected component Ω̂ of the inverse image P−1(Ω) ⊂ Σ̂ and still

denote by P the (restriction of the) projection P : Ω̂ → Ω.

We want to describe the geometry of Ω̂, of the map P as well as the development

and holonomy restricted to Ω̂.
It is enough to consider the case where Ω is the “star” of the vertex p, i.e. the

union of all triangles incident with p (if Ω is a larger region, the other triangles will
simply appear as an appendix glued to the star of p).
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The space Ω̂ is the geometric realization of a simplicial complex whose simplices
are simplices in Ω together with an admissible homotopy class of curve connecting
the base point to the given simplex.

Let us denote by T1, T2, ..., Tk the list of all triangles (i.e. 2-simplices) incident
with p and assume that x0 ∈ T1. Assume also that Ti has a common edge with Ti+1

and Tk has a common edge with T1. Then a triangle in Ω̂ is given by a pair (Ti, [a])
where [a] is the homotopy class of a curve a in Ω′ from x0 to Ti. This homotopy
class is parametrized by a single integer d ∈ Z (the degree of a) which counts the

number of times a turns around the point p. In other words, Ω̂ is an infinite strip
made out of countably many copies of each triangle T1, T2, ..., Tk each indexed by
the degree d ∈ Z

Ω̂ =
⋃

d∈Z

(T1,d ∪ T2,d ∪ ... ∪ Tk,d) .

To develop Ω̂, start with an isometry f1 from T1 to a triangle in the euclidean plane

and continue this isometry by unfolding each hinge in Ω̂. The development f then
clearly satisfies

f(Ti,d) = Rdf(Ti,0)

where R is a rotation of angle θ (= the sum of the angles at p of the triangles
T1, T2, ..., Tk) around the point q = f1(p). The rotation R ∈ E(2) is clearly the
holonomy of the generator [c] of π1(Ω

′, x0).

We collect in the next proposition, some of the conclusions of the previous dis-
cussion:

Proposition 1.15. (1) The inverse image P−1(p) of p in Ω̂ contains exactly
one point p̂;

(2) the holonomy ϕ(c) of [c] is a rotation of angle θ = 2π(β + 1);
(3) if β is not an integer, then q = f(p̂) is the unique fixed point of the rotation

ϕ(c).

�

1.6. Geometric equivalence of euclidean triangulations. Let (Σ, T ) be a
piecewise flat surface. Choose a triangle Tα0

∈ T and a point q in the interior
of an edge of Tα0

. If one connects the point q to the opposite vertex in Tα0
by a

euclidean segment, one obtains two subtriangles T ′

α0
, T ′′

α0
whose union is Tα0

.
If one replaces the triangle Tα0

with T ′

α0
and T ′′

α0
in the triangulation Tq, one

obtains a new triangulation Tq.

Definition 1.16. a) The triangulation Tq is said to be obtained from T by an
elementary subdivision.

b) The geometric equivalence is the equivalence relation on the set of euclidean
triangulations on a surface which is generated by elementary subdivisions.

In other words, two euclidean triangulations T1, T2 on the surface Σ are geo-
metrically equivalent if there is a common subdivison T which is also a euclidean
triangulation.

Proposition 1.17. The area measure dA, the length structure ℓ, the singularity
order β, the development and holonomy are invariants of this equivalence relation.
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Proof. The statement is obvious for dA, ℓ and β. Observe now that if T is a triangle
of T and T ′, T ′′ is an elementary subdivision of T , then the pair (T ′, T ′′) is the hinge
of their common edge e ⊂ T . Observe also that if f : T → R2 is an isometry, then
f is an unfolding of that hinge.

This argument shows that the development remains unchanged when subdivising
the triangulation. Since the development is invariant, so is the holonomy.

�

1.7. Flat metrics with conical singularities. If (Σ, T ) is a piecewise flat sur-
face, then Σ′ carries a well defined riemannian metric m; this metric is flat (i.e. it
has no curvature) and in the neighbourhood of a conical singularity of total angle
θ, we can introduce polar coordinates (r, ϕ), where r ≥ 0 is the distance to p and
ϕ ∈ R/(θZ) is the angular variable (it is defined modulo θ). In these coordinates,
the metric reads

m = dr2 + r2dϕ2.

A calculation shows that this metric can be written as

(1.2) mβ = |z|2β|dz|2,

where z = 1
β+1

(reiϕ)β+1 (see [32]).

Definition 1.18. A flat surface with conical singularities (Σ,m) is a surface Σ
together with a singular Riemannian metric m which is isometric to the metric mβ

in (1.2) in the neighbourhood of every point p ∈ Σ, where β = β(p) ∈ (−1,∞).

One says that β(p) is the singularity order of p and p is a conical singularity if
β(p) 6= 0. The singular points form a discrete set and the formal sum (with discrete
support)

∑
β(p) p is called the divisor of the singular metric m. One sometimes

also says that m represents this divisor.

Proposition 1.19. Any compact flat surface with conical singularities (Σ,m) can
be geodesically triangulated. The resulting triangulation is a euclidean triangulation
on Σ and the associated length structure coincides with the length in the metric m.

A proof can be found in [32] and in [31]. See also [19] and [27] for further
discussions on triangulations of piecewise flat surfaces.

�

Proposition 1.20. Two euclidean triangulations T , T ′ on a compact surface Σ are
geometrically equivalent if and only if they give rise to the same flat surface with
conical singularities m on Σ.

Proof. It is clear from Proposition 1.17, that two triangulations which are geo-
metrically equivalent give rise to the same singular flat metric. Conversely, suppose
that the triangulations T and T ′ define the same metric, then each triangle of T
is decomposed by T ′ in a finite number of polygonal regions. We may then fur-
ther decompose these polygons in euclidean triangles, and we thus obtain a new
euclidean triangulation of Σ which is a subdivision of both T and T ′.

�
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1.8. Relation with Riemann surfaces. If (Σ,m) is an oriented flat surface with
conical singularities, then it is covered by charts {(Uj, zj)} such that the metric
m takes the form (1.2) in each Uj . The transition from one such coordinate zj to
another one is given by a conformal transformation. Thus Σ is a Riemann surface
with a holomorphic atlas given by {(Uj , zj)}.

Remark 1.21. The reader should observe here that the conical singularities are
invisible from the conformal viewpoint. This is a consequence of the formula (1.2)
which shows that the singular metric is conformal to a smooth metric. It can also
be seen as a consequence of the theorem of removability of singularities of locally
bounded meromorphic functions.

In the converse direction, we can start with a closed Riemann surface with a
divisor and ask whether there is a conformal flat metric representing this divisor.
The answer is positive and the following theorem classifies all compact euclidean
surfaces with conical singularities.

Theorem 1.22. Let Σ be a compact connected Riemann surface without boundary.
Fix n distinct points p1, p2, . . . , pn ∈ Σ and n real numbers β1, β2, . . . , βn ∈ (−1,∞).

There exists a conformal flat metric m on Σ having a conical singularity of order
βj at pj (j = 1, . . . , n) if and only if the Gauss-Bonnet condition χ(S)+

∑n
j=1 βj = 0

holds. This metric is unique up to homothety.

See [32], a shorter proof can be found in [34, §IV].
�

Remark 1.23. A careful examination of the proof shows that the metric m depends
continuously on all the parameters: The conformal structure, the points pj and the
orders βj.

There is a similar theorem for the case of hyperbolic metrics with conical singularities, see

[15, 23, 26, 33]. There are are also various other extensions (non constant curvature, non orientable

surfaces, non compact surfaces, and surfaces with boundary, see [17, 33, 34]). The case of spherical

metric is more delicate, see [12, 35] for a study of spherical metric with three conical singularities

on the 2-sphere.

Theorem 1.24. Given a compact oriented surface Σ, there are natural bijections
between the following three sets:

1) The set of geometric equivalence classes of euclidean triangulations on Σ up to
homothety;

2) the set of flat metrics m on Σ with conical singularities up to homothety;
3) the set of conformal structures on Σ together with a finite real divisor

∑
i βipi

such that βi > −1 and the Gauss-Bonnet condition (1.1) is satisfied.

Proof. Theorem 1.22 says precisely that there is a bijection between sets (2) and
(3). Proposition 1.20 shows that there is a natural injection from (1) to (2), this
injection is surjective by Proposition 1.19.

�

2. Punctured surfaces

2.1. Punctured surfaces and their fundamental groups.
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Definition 2.1. We define a punctured surface Σg,n to be an oriented, closed
connected surface Σ of genus g together with a distinguished set of n pairwise distinct
points p1, p2, ..., pn ∈ Σg,n.

The points p1, ..., pn are considered to be special places (with some geometric
significance) on the surface. We call them the punctures and we denote by Σ′

g,n the
surface obtained by removing them:

Σ′

g,n = Σg,n \ {p1, p2, ..., pn}.

The connected sum of two punctured surfaces is defined by removing a disk con-
taining no puncture in each surface and then gluing them along their boundary.
The resulting surface is again a punctured surface. In fact we have

Σg1,n1
#Σg2,n2

= Σg1+g2,n1+n2
,

where the symbol # means the connected sum. In particular

(2.3) Σg,n = Σg,0 #Σ0,n.

We easily deduce from this observation that the Euler characteristic of Σ′

g,n is
given by

(2.4) χ(Σ′

g,n) = 2 − 2g − n.

If n > 0, then Σ′

g,n can be homotopically retracted onto a bouquet of 2g + n − 1
circles and the fundamental group πg,n of Σ′

g,n is thus a free group on 2g + n − 1
generators.

Note that πg,n also admits the following presentation with 2g+n generators and
one relation:

(2.5) πg,n = 〈a1, ..., ag, b1, ..., bg, c1, ..., cn
∣∣Π [ai, bi] = Πcj〉,

this presentation is a consequence of the identity (2.3) and Van Kampen’s Theorem.

2.2. Uniformization of a punctured Riemann surface. Let us fix a conformal
structure [m] on Σg,n. Assuming that 2− 2g− n < 0, the uniformization Theorem
states that (Σ′,m) is conformally equivalent to U/Γ where U = {z ∈ C

∣∣Re(z) > 0}

is the upper-half plane, and Γ ⊂ PSL2(R) is a Fuchsian group of the first kind2

isomorphic to πg,n.

The isomorphism πg,n → Γ is compatible with the punctures in the sense that
the generator ci is sent to a parabolic element of Γ and the generators ai, bi are sent
to hyperbolic elements (here, the letters ai, bi, cj refer to the presentation (2.5)).

Let us denote by Υ ⊂ ∂U = R ∪ {∞} the set cusp points of Γ, i.e. the set of
fixed points of all parabolic elements in Γ. Following [29, page 10], we define a

topology on Û = U ∪ Υ as follows: for a point z ∈ U, the family of hyperbolic
disks D(z, ρ) is a fundamental system of neighborhoods of z. For a point y ∈ Υ
the family of horodisks centered at y is a fundamental system of neighborhoods

of y. With this topology, Û is a Hausdorff space and Γ acts by homeomorphisms.
The space is not locally compact and Υ is topologically a discrete space. Standard

2Recall that a Fuchsian group is a discrete subgroup of PSL2(R), it is of the first kind if there
is a fundamental domain D ⊂ U of finite hyperbolic area.
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arguments from hyperbolic geometry (see e.g. [29]) show that the projection map
P : U → U/Γ = Σ′ extends to a surjective continuous map

(2.6) P̂ : Û → Σ

where Û = U ∪ Υ. This extension maps Υ to the punctures {pi} ⊂ Σ.

Remarks 1) The previous considerations show that there exists a unique metric
m−1 on Σ′ of constant curvature −1 which is complete, has finite volume and
belongs to the conformal structure [m]. This metric has a cusp at each puncture pi,
it is the unique metric such that P ∗m−1 is the Poincaré metric on U; its existence
can also be proved by directly solving the prescribed curvature equation (see [16,
17]).

2) We know from Theorem 1.22 that the conformal class [m] also contains a
metric m0 on Σ′, unique up to homothety, which is flat and has a conical singularity
of order βj at pj (j = 1, . . . , n) provided (1.1) holds.

This flat metric lifts as a flat conformal metric m̃0 = P ∗(m0) on U. For this

metric, U is not complete and its completion is given by Û = U. The map P̂ : Û → Σ
is thus a concrete model of the universal branched covering introduced earlier.

We identify the set Υ as a subset of Γ as follows: we first fix a base point z̃0 ∈ U

and let z0 = P (z̃0) ∈ Σ. For y ∈ Υ, let us denote by γ̃y the hyperbolic ray in U

starting at z̃0 and asymptotic to the point y, and let γy = P (γ̃y), this is a path
joining z0 to a puncture pi = P (y). Now let Di ⊂ Σ be a small disk around pi

containing no other puncture, and let γ′y = γy \Di.
We now define cy ∈ π1(Σ

′, z0) to be the homotopy class of the path obtained by
following γ′y, then ∂Di (in the positive direction) and then (γ′y)−1.

Recall that we have a canonical isomorphism, Γ ∼= π1(Σ
′, z0) = πg,n, we have

thus constructed a map

(2.7)
Υ → Γ
y 7→ cy

It is clear that cy ∈ Γ is a parabolic element fixing y, in particular, the map Υ → Γ
is injective.

2.3. Some Groups of Diffeomorphisms of a Punctured surface. Given a
punctured surface Σ = Σg,n, we define Diffg,n to be the group of diffeomomor-
phisms h : Σ → Σ which leaves the set {p1, ..., pn} of punctures invariant. We
also introduce the following subgroups: Diff+

g,n ⊂ Diffg,n is the subgroup of ori-
entation preserving diffeomomorphisms, PDiffg,n is the subgroup of pure diffeo-
momorphisms, i.e. diffeomomorphisms fixing each puncture pi individually and
PDiff+

g,n = PDiffg,n ∩Diff+
g,n.

Every element h ∈ Diff+
g,n permutes the punctures and we have an exact sequence

1 → PDiff+
g,n → Diff+

g,n → Sym(n) → 1.

where Sym(n) is the permutation group of {p1, ..., pn}.
We also define Diff0

g,n ⊂ PDiff+
g,n to be the group of diffeomorphisms which are

isotopic to the identity through an isotopy fixing the punctures. The quotient

Modg,n = π0(Diff+
g,n) = Diff+

g,n /Diff0
g,n,
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is called the mapping class group or the modular group of the punctured surface
Σg,n, and

PModg,n = π0(PDiff+
g,n) = PDiff+

g,n /Diff0
g,n,

is the pure mapping class group.

These groups have been intensely studied since the pioneer work of Dehn and
Nielsen. We refer to [5, 20, 24, 37] among many other papers, for more information.

2.4. Outer automorphisms. The mapping class group is related to the group
of outer automorphisms of the fundamental group of Σ′. Let us recall this purely
algebraic notion: If π is an arbitrary group, we denote by Aut(π) the group of all
its automorphisms and by Inn(π) ⊂ Aut(π) the subgroup of inner automorphisms
(i.e. conjugations γ → αγα−1). This is a normal subgroup.

Definition 2.2. The group of outer automorphisms of π is the quotient

Out(π) = Aut(π)/ Inn(π).

An outer automorphism is thus an automorphism of π defined up to conjugacy.

Lemma 2.3. There is a naturally defined group homomorphism

Modg,n → Out(πg,n).

Proof. This homomorphism is defined as follows. Let h ∈ Diff(Σ′) be an arbitrary
diffeomorphism and fix a base point ∗ and a path δ in Σ′ connecting ∗ to h(∗). If
γ is a loop in Σ′ based at ∗, then we set

hδ(γ) = δ−1(h ◦ γ)δ.

This defines an automorphism hδ,# ∈ Aut(πg,n).
If δ′ is another path connecting ∗ to h(∗), then hδ,# and hδ′,# are conjugate by

δ−1δ′. The outer automorphism h# ∈ Out(πg,n) is thus well defined independently
of the choice of the path δ and it is clear that if h is homotopic to the identity,
then it acts trivially on πg,n, i.e. we have defined a map Modg,n → Out(πg,n). It
is routine to check that it is a group homomorphism. �

Introducing the group POut(πg,n) ⊂ Out(πg,n) of all outer automorphisms pre-
serving the conjugacy class of each ci (i = 1, ..., n) in the presentation (2.5), we
have the following deep result:

Theorem 2.4. If g > 0 and n > 0, then the homomorphism defined in the previous
lemma induces an isomorphism

(2.8) Φ : PModg,n
∼
−→ POut(πg,n).

This is the so called Dehn-Nielsen-Baer Theorem, see [20, 37] for a proof.
�

2.5. Lifting the group Diff0(Σ′) on U. Using the notations of section 2.2, one

writes the universal branched covering of Σg,n as P̂ : Û → Σ, where Û = U∪Υ (we
still assume 2 − 2g − n < 0).

We denote by Diff+(U) the group of orientation preserving diffeomorphisms of

U = Σ̃′ and we define the normalizer N(Γ) and the centralizer C(Γ) of Γ in Diff+(U)
by

N(Γ) = {h ∈ Diff+(U)
∣∣ hΓ = Γh}.



14 MARC TROYANOV

and
C(Γ) = {h ∈ Diff+(U)

∣∣ h ◦ γ = γ ◦ h for all γ ∈ Γ}.

Observe that C(Γ) = ker(ψ), where ψ : N(Γ) → Aut(Γ) is defined by ψ(h) : γ →
hγh−1.

The center of Γ is the intersection Z(Γ) = Γ ∩ C(Γ); it is the largest abelian
subgroup of Γ.

Lemma 2.5. Let Γ be an arbitrary Fuchsian group, then Z(Γ) is trivial unless Γ
is cyclic.

Proof. This follows from classical Fuchsian group theory. Indeed, it is well known
that if γ1, γ2 are non-trivial elements in PSL2(R), then they commute if and only
if they have the same fixed points (see e.g. [21, theorem 2.3.2]). So if Z(Γ) contains
a non-trivial element γ0, then any γ ∈ Γ \ {id} must have the same fixed points as
γ0 and it follows from [21, theorem 2.3.5]) that Γ is cyclic.

�

Recall the projection P : U → Σ′ = U/Γ. For any element h ∈ N(Γ), we define
P∗h : Σ′ → Σ′ by P∗h(x) = P (h(x̃)) where x̃ ∈ U is an arbitrary point in P−1(x).
This map is well-defined, because the condition hΓ = Γh means precisely that h
maps Γ-orbits in U to Γ-orbits, and it is clearly a diffeomorphism. We thus have
defined a map

P∗ : N(Γ) → Diff+(Σ′),

and it is obviously a group homomorphism.

Proposition 2.6. Γ is a normal subgroup in N(Γ) and P∗ defines an isomorphism
from N(Γ)/Γ to Diff+(Σ′).

Proof. It is obvious that Γ ⊂ N(Γ) is normal and that P∗(Γ) = {id}. In particu-
lar P∗ factors through a well defined homomorphism N(Γ)/Γ → Diff+(Σ′). This
homomorphism is surjective since every diffeomorphism of Σ′ lifts to the universal
cover U of Σ′.

Suppose now that P∗h = id. Then h(x) ∈ Γ · x for all x ∈ U . This means
that there exists a map U → Γ, x → γx such that h(x) = γx x for all x ∈ U .
Since h is continuous, so is this map, but this implies that x 7→ γx is constant
because Γ is a discrete group. It follows that h ∈ Γ and we have shown that
P∗ : N(Γ)/Γ → Diff+(Σ′) is also injective.

�

Lemma 2.7. P∗ maps C(Γ) isomorphically onto Diff0(Σ′).

Proof. Suppose that P∗h ∈ Diff0(Σ′). Then there exists an isotopy ht ∈ N(Γ) such
that h0 = id and h1 = h. Hence ψ(ht) ∈ Aut(Γ) is constant by continuity. Because
ψ(h0) = ψ(id) ∈ Aut(Γ) is the trivial element, we have h ∈ kerψ = C(Γ).

In the reverse direction, we use an argument going back to Nielsen: Suppose that
h ∈ kerψ = C(Γ) and define ht(x) ∈ U to be the point on the hyperbolic segment
[x, h(x)] such that d(x, ht(x)) = td(x, h(x)) (where d is the hyperbolic distance in
U). Since h ∈ kerψ and Γ preserves the hyperbolic distance in U, the segment
[γx, h(γx)] coincides with [γx, γh(x)] for any x ∈ U and any γ ∈ Γ. Therefore we
have ht(γx) = γht(x), i.e. ht ∈ C(Γ) ⊂ N(Γ). The path P∗ht ∈ Diff(Σ′) is an

isotopy from P∗h to the identity and we conclude that P∗h ∈ Diff0(Σ′).
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We have proved that P−1
∗

(Diff0(Σ′)) = C(Γ). It is now clear that P∗ : C(Γ) →
Diff0(Σ′) is an isomorphism since its kernel is C(Γ) ∩ Γ = Z(Γ) = {id}.

�

Corollary 2.8. P∗ induces an isomorphism from N(Γ)/(Γ×C(Γ)) to the modular
group Modg,n.

3. The representation variety of a finitely generated group in SE(2)

Given a finitely generated group π and an algebraic Lie group G, it is easy to see
that the set Hom(π,G) is an algebraic set. The group G itself acts on Hom(π,G) by
conjugation: g · ϕ(γ) = g−1ϕ(γ)g. The quotient space is called the representation
variety of π in G and denoted by

R(π,G) = Hom(π,G)/G.

This variety plays an important role in the study of geometric structures on mani-
folds, see e.g. [14].

The discussion in section 1.4 shows that an element of the representation variety
R(π,E(2)) is associated to any piecewise flat surface (Σ, T ) (where π = π1(Σ

′, x0)).
In the present section, we investigate the structure of R(π,E(2)), in fact, for con-
venience, we shall restrict ourself to the subgroup SE(2) ⊂ E(2) of orientation
preserving isometries of the euclidean plane (this is a subgroup of index 2).

3.1. On the cohomology of groups. We will need some elementary results from
group cohomology; here we recall a few basic definitions and facts.

Let π be an arbitrary group and A be a π-module, i.e. an abelian group with a
representation ρ : π → Aut(A).

Definition 3.1. (1) A 1-cocycle in A is a map σ : π → A such that

σ(γ1γ2) = σ(γ1) + ρ(γ1) · σ(γ2)

for any γ1, γ2 ∈ π. The set of 1-cocycles is an abelian group denoted by
Z1(π,A).

(2) The 1-cocycle σ ∈ Z1(π,A) is a 1- coboundary if it can be written as

σ = δa(γ) = ρ(γ) · a− a.

for some element a ∈ A. The set of 1-coboundaries is a subgroup of Z1(π,A)
denoted by B1(π,A).

(3) The quotient

H1(π,A) = Z1(π,A)/B1(π,A)

is the first cohomology group of π with values in A.

Example. Let us compute the first cohomology group when A = k is a field
and π is a finitely generated group. We denote by kρ the π-module k with the
representation ρ : π → Aut(k).

Assume first that the representation ρ : π → Aut(k) is a scalar representation,
i.e. ρ : π → k∗ ⊂ Aut(k) and that π = Fs = 〈a1, a2, ..., as〉 is a free group on s
generators.
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Since π is free, the homomorphism ρ : π → k∗ is completely determined by
the vector r = (ρ(a1), ρ(a2), ..., ρ(as)) ∈ (k∗)s. Likewise, a cocycle is given by the
vector

t = (τ(a1), τ(a2), ..., τ(as)) ∈ ks.

There is no restriction on the vector t ∈ ks (again because π is free) and thus

(3.9) Z1(π, kρ) ∼= ks.

An element σ ∈ Z1(π, kρ) is a coboundary if σ = u(id− ρ) for some u ∈ k, thus

B1(π, kρ) ∼= k · (1 − ρ(a1), 1 − ρ(a2), ..., 1 − ρ(as)) ∈ ks.

Let us choose a linear form µ : ks → k such that µ ≡ 0 if ρ is trivial and

µ(1 − ρ(a1), 1 − ρ(a2), ..., 1 − ρ(as)) 6= 0

else. It is easy to check that

B1(π, kρ) ⊕ kerµ = ks = Z1(π, kρ)

in ks and we thus obtain the following

Proposition 3.2. For any free group on s generators, we have

H1(π, kρ) = Z1(π, kρ)/B
1(π, kρ) = kerµ ∼=

{
ks if ρ is trivial,

ks−1 otherwise.

�

General case. Let us compute the first cohomology group when A = k is a
field and π is a finitely presented group with presentation

π = 〈S
∣∣R〉.

Here S = {a1, a2, ..., as} ⊂ π is a finite set generating the group andR = {r1, r2, ..., rm} ⊂
F (S) (= the free group on S) is a finite set of words in S defining all the relations
among the elements of S. We denote by kρ the π-module k with the representation
ρ : π → Aut(k).

For any relation r = ai1ai2 · · · aip
∈ R, we introduce the linear form λr : ks → k

defined by

(3.10) λr(σ) =

p∑

µ=1

(
∏

ν<µ

ρ(aiν
)

)
σ(aiµ

)

and we define Λ : ks → km, by

(3.11) Λ(σ) = (λr1
(σ), ..., λrm

(σ)).

Lemma 3.3. Th space of 1-cocycles in kρ is given by

Z1(π, kρ) = kerΛ =
⋂

r∈R

kerλr ⊂ ks.
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Proof. If σ ∈ Z1(π, kρ) and r = ai1ai2 · · ·aip
∈ R, then we deduce from the cocycle

relation that

0 = σ(r) = σ(ai1ai2 · · · aip
) = σ(ai1 ) + ρ(ai1)σ(ai2 · · ·aip

)

= σ(ai1 ) + ρ(ai1)σ(ai2 ) + ρ(aii1
)ρ(ai2)σ(ai3 · · · aip

)

=

p∑

µ=1

(
∏

ν<µ

ρ(aiν
)

)
σ(aiµ

).

�

On the other hand, since any 1-coboundary in kρ is a multiple of ρ− 1, we have

B1(π, kρ) = k · (ρ− 1) ⊂ ks.

We have proved the following

Proposition 3.4. The first cohomology group of the finitely presented group π =
〈S
∣∣R〉 with value in kρ is given by

H1(π, kρ) = kerΛ/(k(ρ− 1)).

�

In particular, if π has exactly one non trivial relation, then

H1(π, k) ∼=

{
ks−1 if ρ is trivial,

ks−2 otherwise.

where s = Card(S) is the number of generators.

3.2. Abelian Representations. Representations of a finitely presented group π
in an abelian Lie group are easy to describe:

Lemma 3.5. If G is an abelian group, then R(π,G) = Hom(π,G). This set is
itself an abelian topological group.

Proof. Since there are no non trivial inner automorphisms in an abelian group, it
is clear that R(π,G) = Hom(π,G).

We endow Hom(π,G) with the compact open topology and we define a product
on this space by

(ϕ1ϕ2)(γ) = ϕ1(γ)ϕ2(γ)

for ϕ1, ϕ2 ∈ Hom(π,G) and γ ∈ π. The following calculation shows that Hom(π,G)
is a group for this multiplication:

(ϕ1ϕ2)(γ1γ2) = ϕ1(γ1γ2)ϕ2(γ1γ2)

= ϕ1(γ1)ϕ1(γ2)ϕ2(γ1)ϕ2(γ2)

= ϕ1(γ1)ϕ2(γ1)ϕ1(γ2)ϕ2(γ2)

= (ϕ1ϕ2)(γ1)(ϕ1ϕ2)(γ2).

The identity e in Hom(π,G) is the trivial representation. Observe finally that this
group is abelian since ϕ1(γ)ϕ2(γ) = ϕ2(γ)ϕ1(γ).

�
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Recall that the abelianized group of π is the abelian group

Ab(π) = π/[π, π].

Another useful remark is that if G is abelian, then

Hom(π′ × π′′, G) = Hom(π′, G) × Hom(π′′, G)

for any groups π′, π′′.

Assume now that π is a finitely generated group. Ab(π) is then an abelian group
of finite type, hence

Ab(π) = π/[π, π] = Z
r ⊕ F

where F is a finite abelian group (the torsion) and r ∈ N is the abelian rank of π.
We obviously have Hom(π,G) = Hom(Ab(π), G) and it is clear that all repre-

sentation varieties of a finitely generated group π in an abelian Lie group G can be
deduced from the following special cases:

1) Hom(Z,R) = R;
2) Hom(Z, U(1)) = U(1);
3) Hom(Z/mZ,R) = 0;
4) Hom(Z/mZ, U(1)) = {z ∈ C

∣∣ zm = 1}.

For instance, if π is the free group on s generators, then Ab(π) = Zs. Thus
Hom(π,R) = Rs and Hom(π, U(1)) = Ts.

Another simple example, with torsion, is the group π′ = 〈a, b, c
∣∣ [a, b] = cm〉. We

have Ab(π′) = Z2 ⊕ Z/mZ, therefore Hom(π′,R) = R2 and

Hom(π′, U(1)) = T
2 ⊕ {e2kiπ/m

∣∣m = 0, 1, . . . ,m− 1}.

3.3. Representations in SE(2). We denote by SE(2) = Iso+(R2) the group of
orientation preserving isometries of the euclidean plane.

We may identify the euclidean plane with the complex line C: any g ∈ SE(2)
can then be written as g(z) = u · z + v where u ∈ U(1) ⊂ C∗ and v ∈ C. We thus
identify SE(2) with the subgroup of GL2(C) consisting of matrices of the form

SE(2) =

{(
u v
0 1

)∣∣∣∣ u, v ∈ C, |u| = 1

}
.

In particular SE(2) is a semidirect product U(1)⋊C and any representation ϕ ∈
Hom(π, SE(2)) can be written as

(3.12) ϕ =

(
ρϕ τϕ
0 1

)

where ρϕ : π → U(1) and τϕ : π → C. Observe the following:

Lemma 3.6. The map ρϕ : π → U(1) is a group homomorphism. It only depends
on the conjugacy class of ϕ.

The proof is elementary.

Definition 3.7. The homomorphism ρϕ : π → U(1) is the character of the repre-
sentation class ϕ ∈ Hom(π, SE(2)).



ON THE MODULI SPACE OF SINGULAR EUCLIDEAN SURFACES 19

Remark: In the literature on group representations, the character χϕ : π → K
of a representation ϕ ∈ GLn(K) is classically defined to be the trace of the repre-
sentation. The two notions of characters are equivalent as shown by the formula

χϕ = Trϕ = 1 + ρϕ.

Any homomorphism ρ ∈ Hom(π, U(1)) defines a structure of π−module on C.
We will denote by Cρ this π−module, and we have:

Proposition 3.8. Given any pair of maps ρ : π → U(1) and τ : π → C, the
map ϕ : π → SE(2) given by (3.12) is a group homomorphism if and only if
ρ ∈ Hom(π, U(1)) and τ ∈ Z1(π,Cρ).

Proof. Suppose that ϕ : π → SE(2) is given by (3.12). Then we have

ϕ(γ1γ2) =

(
ρ(γ1γ2) τ(γ1γ2)

0 1

)

and

ϕ(γ1)ϕ(γ2) =

(
ρ(γ1) τ(γ1)

0 1

) (
ρ(γ2) τ(γ2)

0 1

)

=

(
ρ(γ1)ρ(γ2) τ(γ1) + ρ(γ1)τ(γ2)

0 1

)
.

It follows that ϕ is a group homomorphism (i.e. ϕ(γ1γ2) = ϕ(γ1)ϕ(γ2)) if and only
if

ρ(γ1γ2) = ρ(γ1)ρ(γ2)

and

τ(γ1γ2) = τ(γ1) + ρ(γ1)τ(γ2).

In other words ϕ is a homomorphism if and only if ρ : π → U(1) is a homomorphism
and τ is a 1-cocycle in the corresponding π-module Cρ.

�

This Proposition says that the map from Hom(π, SE(2)) to the set

{(ρ, τ)
∣∣ ρ ∈ Hom(π, U(1)) and τ ∈ Z1(π,Cρ)}

given by ϕ→ (ρϕ, τϕ), is a bijection. In particular we have

Corollary 3.9. If π is the free group on s generators, then

Hom(π, SE(2)) ≃ T
s × C

s.

Proof. This follows from equation (3.9) and the fact that Hom(π, U(1)) = Ts.
�

3.4. Conjugation by similarities. Recall that a similarity in the plane is the
composition of an isometry with a homothety.

Once we identify the euclidean plane with the complex line C, any similarity
g ∈ Sim(2) can be writen as g(z) = a · z + b where a ∈ C∗ and b ∈ C. We thus
identify Sim(2) with the following subgroup of GL2(C):

Sim(2) =

{(
a b
0 1

)∣∣∣∣ a, b ∈ C, a 6= 0

}
.
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In particular we have

Sim(2) = R+ ⋊ SE(2) = C
∗
⋊ C.

Definition 3.10. Two representations ϕ1, ϕ2 : π → SE(2) are similar if they are
conjugate modulo a similarity.

Proposition 3.11. Given a homomorphism ρ : π → U(1) and two cocycles τ1, τ2 ∈
Z1(π,Cρ), then the representations

(3.13) ϕ1 =

(
ρ τ1
0 1

)
and ϕ2 =

(
ρ τ2
0 1

)

are similar if and only if there exists a complex number a ∈ C∗ such that

τ2 = aτ1 ∈ H1(π,Cρ).

Proof. The homomorphisms ϕ1 and ϕ2 are similar if and only if there exists

g =

(
a b
0 1

)
∈ Sim(2)

such that ϕ2 = gϕ1g
−1, i.e.

(
ρ τ2
0 1

)
=

(
a b
0 1

)(
ρ τ1
0 1

)(
1/a −b/a
0 1

)

=

(
ρ aτ1 + b− ρb
0 1

)
.

This shows that
τ2 − aτ1 = b (1 − ρ) ∈ B1(π,Cρ).

�

For any homomorphism ϕ : π → SE(2) and any λ ∈ R+, we can define a new
homomorphism λ · ϕ : π → SE(2) by

λ · ϕ =

(
ρ λτ
0 1

)
,

This formula defines an action of the multiplicative group R+ on R(π, SE(2)), and
we denote the quotient by

SR(π, SE(2)) = R(π, SE(2))/R+.

It follows directly from the definition that

SR(π, SE(2)) = Hom(π, SE(2))/ Sim(2).

where Sim(2) acts by conjugation on Hom(π, SE(2)).
Let us also define

SRreg = {[ϕ] = [ρ, τ ] ∈ SR(π, SE(2))
∣∣ ρϕ 6= id and τ 6= 0}

Corollary 3.12. If π is a free group on s generators, then

SRreg ≃ (Ts \ {id}) × CP
s−2

Proof. This is an immediate consequence of the previous results, in particular
Proposition 3.2 and 3.11.

�
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4. Deformation Theory

4.1. The Moduli and Teichmüller spaces. The moduli space of Σg,n is the
quotient of the space of conformal structures on Σg,n by the pure diffeomorphism
group. Let us be more specific: recall first that a conformal structure is an equiv-
alence class of smooth Riemannian metric m on Σ = Σg,n, where two Riemannian
metrics m1,m2 are equivalent if and only if there exists a function u : Σ → R such
that

m2 = e2um1.

We denote by Met(Σ) the space of all smooth Riemanian metrics on Σ endowed
with its natural C∞ topology and by

Conf(Σ) = Met(Σ)/C∞(Σ)

the space of conformal structures. We then define the moduli space of Σg,n to be
the quotient

Mg,n = Conf(Σ)/PDiff+
g,n .

A point µ ∈ Mg,n is concretely represented by a Riemannian metric m on Σ, and
two Riemannian metrics m1,m2 represent the same modulus point µ if and only if
there exists a smooth function u : Σ → R and a diffeomorphism h ∈ PDiff+

g,n such

that m2 = e2uh∗(m1).

A remark about the smoothness: By definition a point µ in the moduli space is represented by

a smooth metric. In particular, the puntures play no role in the definition of the spaces Met(Σ)

and Conf(Σ) (but they do in the definition of the moduli space Mg,n). However, since only the

conformal class of the metric matters, one may also represent µ by a singular metric m as long as

this metric is conformally equivalent to a smooth one. In particular we can (and will) represent a

point in Mg,n by a metric having conical singularities at the punctures of Σg,n, see Remark 1.21

The moduli space is a complicated object, and it is useful to also introduce the
simpler space obtaind by considering isotopy classes of conformal structures on Σg,n

instead of isomorphism classes: this is the Teichmüller space defined as

Tg,n = Conf(Σg,n)/Diff0
g,n .

Let us list some of the basic facts about these spaces:

(1) The Teichmüller space Tg,n is a real analytic variety in a natural way. If 3g −
3 + n > 0, then it is isomorphic to R6g−6+2n. This space has also a natural
complex structure.

(2) The pure mapping class group PMod+
g,n acts properly and discontinuously on

Tg,n.

(3) The moduli space is the quotient Mg,n = Tg,n/PMod+
g,n. It is thus a good

orbifold of dimension 6g−6+2nwith fundamental group π1(Mg,n) = PModg,n.

(4) There exists a torsion free subgroup M0 ⊂ PMod+
g,n of finite index acting freely

on Tg,n. The quotient map Tg,n/M0 is a non singular analytic manifold which
is a finite cover of the orbifold Mg,n.

Proof. Statement (1) is explained in any textbook on Teichmüller theory such as [1].
Statement (2) was first proved by S. Kravetz [18], see also [1]. (3) is a consequence
of (1) and (2) and the last statement is discussed in [20, §5.4].

�
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4.2. The deformation space of piecewise flat metrics. Let us denote by Eg,n

the set of all flat metrics on Σg,n with possible conical singularities at the punctures
(it is not empty since we have assumed 2g+n−2 > 0). To any flat metric m ∈ Eg,n,
we associate the following basic invariants : Its conformal class [m] ∈ Conf(Σ), its
area A = A(m) > 0 and the order βi > −1 of m at the point pi.

Theorem 4.1. The map

Eg,n → Conf(Σ) × R
n
+

m 7→ ([m], (s1, ..., sn)),

where si = A (1 + βi) > 0, is a bijection.

Proof. This is just a reformulation of Theorem 1.22.
�

Definition 4.2. We will endow the set Eg,n with the topology for which this map
is a homeomorphism.

A metric m2 ∈ Eg,n is said to be a deformation of the metric m1 ∈ Eg,n if the
two metrics differ by a homothety and an isotopy fixing the punctures, i.e. if there
exists h ∈ PDiff0

g,n and λ > 0 such that m2 = λh∗(m1). We denote by DEg,n the
deformation space of flat metrics on Σg,n with possible conical singularities at the
punctures:

DEg,n = Eg,n/(R+ × PDiff0
g,n).

Corollary 4.3. This space is homeomorphic to R6g+3n−7. In fact we have the
following canonical identification:

DEg,n = Tg,n × ∆,

where Tg,n is the Teichmüller space and ∆ ⊂ R
n is defined by

∆ = {~β = (β1, ...βn) ∈ R
n
∣∣βi > −1 and

∑

i

βi = 2g − 2}.

Let us fix an element ~β = (β1, ...βn) ∈ ∆ and denote by Eg,n(~β) the space of
singular flat metrics with a conical singularity of order βi at pi (i = 1, ..., n). We

also introduce the corresponding deformation space: DEg,n(~β) = Eg,n(~β)/(R+ ×
PDiffg,n). The previous corollary gives us the identification

DEg,n(~β) = Tg,n.

4.3. Revisiting the development and the holonomy. Consider the punctured

surface Σg,n = Û/Γ as in section 2.2, and fix a flat metricm0 with conical singularity
of order βj at pj (j = 1, . . . , n). If f0 is a germ of an isometry near a point z̃0,
to the euclidean plane (identified with C), then we obtain a map f : U → C by
analytic continuation from f0. This map is a local isometry for the metric m0 on
U and the canonical metric on C (indeed, the set of points where a map f between
two flat surfaces is an isometry is easily seen to be both open and closed). The

map f extends by continuity to Û. The resulting map f : Û → C is the developing
map which we already met in Section 1.3. The associated holonomy is the unique
homomorphism ϕ : Γ → SE(2) such that

f(γu) = ϕ(γ)f(u).
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Theorem 4.4. The following properties of the development and its holonomy are
satisfied:

(1) f : Û → C is surjective;
(2) f(γu) = ϕ(γ)f(u) for all γ ∈ Γ;
(3) for any y ∈ P−1(pi) ⊂ Υ, the isometry ϕ(cy) ∈ SE(2) is a rotation of angle

θi = 2π(βi + 1);
(4) if βi is not an integer, then f(y) is the unique fixed point of ϕ(cy).

Proof. The first assertion has been proved in Proposition 1.10, the second is the
definition of the holonomy and the last two assertions are contained in Proposition
1.15.

�

Corollary 4.5. If βi 6∈ Z for any i = 1, ..., n, then the restriction of f to the set Υ
is determined by the holonomy.

Proof. Fix y ∈ Υ and let cy ∈ Γ be the corresponding group element given by the
map (2.7). Then f(y) ∈ C is the fixed point of the rotation ϕ(cy) ∈ SE(2). This
fixed point is given explicitly by

(4.14) f(y) =
τy

(1 − ρy)
,

where ρy ∈ U(1) is the rotation part and τy ∈ C is the translation part of ϕ(cy). �

Theorem 4.6. (A) There is a well defined map

hol : DEg,n → SR(πg,n, SE(2)),

such that hol([m]) is the conjugacy class of the holonomy homomorphism ϕm :
πg,n → SE(2).

(B) The map hol : DEg,n → SR(πg,n, SE(2)) is continuous.

(C) There are natural actions of PModg,n on DEg,n and POut(πg,n) on SR(π, SE(2)),
and the map hol is Φ-equivariant where Φ is the Dehn-Nielsen-Baer isomorphism
(2.8).

(D) The map hol is locally injective.

Remarks. 1.) The map hol : DEg,n → SR(πg,n, SE(2)) is called the holonomy
mapping.
2.) A more elaborate investigation would show that the holonomy mapping is in
fact real analytic, see [36]. The proof below is perhaps not optimal from the point
of view of rigour, but we have tried to emphasize the geometric point of view.

Proof. (A) To any flat metric m on Σg,n with conical singularities at the punctures,
we have associated a holonomy homomorphism ϕm : πg,n → SE(2) which depends
on the choice of a developing map fm, but changing the developing map does not
affect the conjugacy class of ϕm (see Proposition 1.14). On the other hand, it is clear
that if two flat metricsm,m′ on Σg,n are similar, the associated holonomies ϕm, ϕm′

are also similar. In short, to any deformation class of flat metric [m] ∈ DEg,n with
conical singularities on Σg,n we associate a well defined element [ϕm] = hol(m) ∈
SR(πg,n, SE(2)).
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(B) The developing map fm is not uniquely associated to a flat metric m, but
it is well defined modulo SE(2) (two developing maps for the same metric differ
by postcomposition with an isometry). The SE(2) orbit of the developing map
fm varies continuously with the metric m and therefore it is also the case for
the associated holonomy class. Hence the map hol : DEg,n → SR(πg,n, SE(2)) is
continuous.

(C) Any diffeomorphism h of Σg,n fixing the punctures acts on Eg,n by pulling
back the metric (m 7→ h∗m). If h is isotopic to the identity, it acts trivially on
DEg,n; we thus have a well defined action of PModg,n on DEg,n.

Similarly, any automorphism of πg,n acts on Hom(πg,n, SE(2)), and inner auto-
morphisms act trivially on the representation spacesR(πg,n, SE(2)) and SR(πg,n, SE(2)).
We thus have a natural action of POut(πg,n) on these spaces. It is clear from the

construction of the isomorphism Φ : PModg,n
∼

−→ POut(πg,n) (see the proof of
Lemma 2.3) that the map hol is equivariant.

(D) To prove the local injectivity of hol, we consider two nearby flat metrics

m,m′ with conical singularities on Σg,n = Û/Γ and we assume that they have the
same holonomy ϕ. Since the holonomy around a conical singularity pi is a rotation
of angle θi = 2π(βi + 1), it is clear that both metrics m and m′ have the same
singularity order (the holonomy only controls the cone angle modulo 2π, but since
m and m′ are nearby metrics, they actually have equal cone angles).

It follows that both metrics are isometric near the singularities: we can thus find
an isotopy h1 of the surface such that m = h∗1m

′ near the singularities. Hence we
can simply assume without loss of generality that m = m′ near the singularities; it
is therefore possible to divide the surface in n+ 1 parts

Σg,n = D ∪ E1 ∪ · · · ∪ En,

where D ⊂ Σ′ is a compact region and Ei is a neighbourhood of the puncture pi

such that m = m′ on Ei. We also assume that the Ei are pairwise disjoint disks.

We denote by Êi = P−1(Ei) ⊂ Û and D̂ = P−1(D) ⊂ Û the lifts of Ei and D on the

universal branched cover P : Û → Σg,n. The set Ê = ∪iÊi ⊂ Û is a neighbourhood
of Υ = P−1({punctures}).

Let fm and fm′ be the developing maps of m and m′. By Corollary 4.5, the
two maps coincide on Υ. Because the two metrics coincide on Ei, the map fm and

fm′ coincide up to a rotation on each component of Êi; we can thus find a second
isotopy h2 of Σ, which is a rotation near the punctures and is the identity on D

and such that fm′ ◦ ĥ2 = fm on Ê.
Replacing m′ with h∗2m

′, we can thus assume that both developing maps coincide

on Ê.
To any point x ∈ U, we associate the set

Λ(m,m′, x) = f−1
m (fm′(x)) ⊂ Û.

Since fm is a local diffeomorphism, Λ(m,m′, x) is a discrete set. It varies continu-
ously with m,m′.

Claim: If m is close enough to m′, then for any point x ∈ U , there exists a
unique point y = Q(x) ∈ Λ(m,m′, x) which is the nearest point for the hyperbolic
distance. The map x 7→ Q(x) is Γ-equivariant.
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Indeed, if x ∈ Ê, then the claim is clear: since fm(x) = fm′(x), we have Q(x) =
x. For any point, the claim is clear if m = m′ (and in this case Q(x) = x). For

points in D̂, and m′ close to m the claim follows from the compactness of D and
the discreteness and continuity of Λ(x,m,m′).

For t ∈ [0, 1], we denote by Qt(x) the point on the hyperbolic segment [x,Q(x)]

such that dH(x,Qt(x)) = tdH(x,Q(x)) (observe that if x ∈ Ê, then Qt(x) = x for
any t). This is a Γ-equivariant isotopy of U from the identity to Q. It extends as
the identity on Υ.

We now define an isotopy ht : Σ → Σ by ht(x) = P (Qt(P
−1(x))). It is a well

defined isotopy such that h∗1m
′ = m, since we clearly have fm = fm′ ◦Q.

We thus have proved that two metrics with the same holonomy are isotopic
provided they are close enough. In other words, the map hol is locally injective.

�

5. The Main Theorem

We are now in position to prove the main result. First recall the statement:

Theorem 5.1. Given a punctured surface Σg,n such that 2g+n−2 > 0 and ~β ∈ ∆
such that no βi is an integer, there is a well defined group homomorphism

Φ : PModg,n → G = Aut(T2g) × PGL2g+n−2 C,

and a Φ-equivariant local homeomorphism

H : Tg,n → Ξ = T
2g × CP

2g+n−3.

The theorem says that Mg,n = Tg,n/PModg,n is a good orbifold with a (G,Ξ)-
structure.

Proof The group homomorphism Φ is given by the Dehn-Nielsen-Baer isomor-
phism and the map H is essentially given by the holonomy mapping of the previous
theorem. We divide the proof of the theorem in 5 steps:

Recall that holonomy splits in a rotation part ρm : π → U(1) (the character)
and a translation part τm. The character depends only on the conjugacy class of
ϕm.

Step 1: τm is not identically zero.

Indeed, if τm ≡ 0, then the holonomy group ϕm(πg,n) is a pure rotation group
in the plane. This is impossible by Proposition 1.13.

Step 2: There is a canonical isomorphism

Hom(πg,n, U(1)) ≃ Hom(πg,0, U(1)) × Hom(π0,n, U(1)).
ρm 7→ (ρ′, ρ′′)

Furthermore ρ′′ ∈ Hom(π0,n, U(1)) is given by

ρ′′(ci) = eθi ,

where ci is the homotopy class of a loop traveling once around the puncture pi and
θi = 2π(βi + 1) is the total angle at the cone point pi.

This splitting easily follows from the identity (2.3) and the fact that U(1) is
abelian.
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Let us now fix an element ~β = (β1, ...βn) ∈ ∆ and set

SR~β(πg,n, SE(2)) =
{
ϕ ∈ SR(πg,n, SE(2))

∣∣ ρ′′(ci) = eθi, i = 1, ..., n
}

and

SRreg
~β

= SRreg ∩ SR~β.

Step 3: If at least one βi is not an integer, then we have

SRreg
~β

(πg,n, SE(2)) ≃ Ξ = T
2g × CP

2g+n−3

Indeed, it follows from Step 2 and the results of Section 3 that any ϕ ∈ SRreg
~β

is characterized by ρ′ ∈ Hom(πg,0, U(1)) ≃ T2g and the projective class of τ ∈
H1(πg,n,Cρ) ≃ C2g+n−2 (because πg,n is isomorphic to the free group on s =
2g + n− 1 generators).

Step 4: The group POut(πg,n) acts naturally on Ξ and thus we have a natural
homomorphism Φ : PModg,n → G = Aut(T2g) × PGL2g+n−2 C.

This is clear from Step 3 and part (C) of Theorem 4.6.

Step 5: The map H given by the composition:

Tg,n
∼
→ DEg,n(~β)

hol
→ SRreg

~β

∼
→ Ξ

is well defined, continuous, locally injective and Φ-equivariant.

Indeed, the fact that no βi is integer, together with Step 1, implies that hol :

DEg,n → SR(π, SE(2)) maps DEg,n(~β) into SRreg
~β

. The map H : Tg,n → Ξ is

therefore well defined. It follows from Theorem 4.6 that H is continuous, locally
injective and Φ-equivariant.

It remains only to show that H is a local homeomorphism, but since Tg,n and Ξ
are both manifolds of dimension 6g−6+2n, the conclusion follows from Brouwer’s
Theorem on invariance of dimension.

�

5.1. The case of the sphere. Suppose that g = 0, i.e. Σ is a sphere, choose n
numbers (n ≥ 2) β1, β2, . . . , βn such that 2+

∑
i βi = 0, and denote by M the space

of flat metrics on S2 having n conical singularities of order β1, β2, . . . , βn.

Such a metric m ∈ M can be uniformized as follows : identify Σ with C ∪∞,
and write m as

m = C ·
n∏

i=1

|z − pi|
2βi |dz|2 ,

where p1, p2, . . . , pn is the set of conical singularities and C is a positive constant
representing a dilation factor. It is easy to see that M is homeomorphic to the
quotient

{(p1, p2, . . . , pn) ∈ (C ∪∞)n : pi 6= pj if i 6= j}/PSL2(C) ,

M is thus a complex manifold of dimension n − 3, its fundamental group is the
pure braid group PBn.

Applying the main theorem, we obtain a representation

Φ : PMod0;n = PBn → PGLn−2(C)
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and a Φ equivariant, local homeomorphism

H : T0,n → CP
n−3.

In fact, a finer analysis shows that the image of Φ is contained in PU(1, n−3) ⊂
PGLn−2(C). Furthermore, when the orders satisfy some arithmetical conditions,
the image of Φ is a lattice in PU(1, n− 3):

Theorem 5.2. Assume that −1 < β1, β2, ..., βn < 0,
∑

i βi = −2 and suppose that

(5.15) βi + βj > −1 ⇒ (1 + βj + βi)
−1 ∈ N,

then Φ(PBn) is a lattice in PU(1, n− 3).
These lattices are quotients of the braid group. Some of them are non arithmetic.

This Theorem was first proved by Schwartz (1873) for n = 4 and by Picard
(1888) for n = 5 in their study of the monodromy of the hypergeometric equations.
It has been generalized for any n by P. Deligne and G. Mostow in 1986, see [10].
These authors use the cohomology with coefficients in flat vector bundle on an
algebraic curve.

In the paper [31], W. Thurston obtain the same result by studying a deformation
space of piecewise flat triangulations on the sphere (this nice paper is a 1987 preprint
of W. Thurston, which has been rewritten and appeared in electronic form in 1998).
It is worthwile to quote also the related papers [4, 13, 25, 28].

Our approach can be seen as a bridge between the approach of Thurston and
that of Deligne-Mostow.

Observe that the moduli space M = T0,n/PBn carries a complex hyperbolic
metric (depending upon the choice of the βi’s). It is not complete as a Riemannian
manifold and it carries a natural completion M. Thurston shows that M is a
complex hyperbolic manifold with singularities of conical type. This cone-manifold
has finite volume.

Furthermore, when the βi’s satisfy the condition (5.15), then M is an orbifold.
It is thus possible to construct complete complex hyperbolic orbifolds M of finite
volume.

References

[1] W. Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics,
820. Springer, Berlin (1980).

[2] J. Ambjorn, M. Carfora, A. Marzuoli, The geometry of dynamical triangulations Lecture
Notes in Physics, New Series m50, Springer (1997).

[3] B. H. Bowditch. Singular Euclidean structures on surfaces. Journal of the London Mathe-
matical Society 44 (1991), pp 553-565.

[4] C. Bavard and E. Ghys, Polygones du plan et Polyèdres Hyperboliques, Geom. Dedicata 43
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