Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimization framework for calibration of constitutive models enhanced by neural networks
 
research article

Optimization framework for calibration of constitutive models enhanced by neural networks

Obrzud, RF
•
Vulliet, Laurent  
•
Truty, A.
2009
International Journal for Numerical and Analytical Methods in Geomechanics

A two-level procedure designed for the estimation of constitutive model parameters is presented in this paper. The neural network (NN) approach at the first level is applied to achieve the first approximation of parameters. This technique is used to avoid potential pitfalls related to the conventional gradient-based optimization techniques, considered here as a corrector that improves predicted parameters. The feedforward NN (FFNN) and the modified Gauss–Newton algorithms are briefly presented. The proposed framework is verified for the elasto-plastic modified Cam Clay model that can be calibrated based on standard triaxial laboratory tests, i.e. the isotropic consolidation test and the drained compression test. Two different formulations of the input data to the NN, enhanced by a dimensional reduction of experimental data using principal component analysis, are presented. The determination of model characteristics is demonstrated, first on numerical pseudo-experiments and then on the experimental data. The efficiency of the proposed approach by means of accuracy and computational effort is also discussed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ObrzudVullietTruty2008 online.pdf

Access type

openaccess

Size

418.31 KB

Format

Adobe PDF

Checksum (MD5)

fac26cfbce78599b8950ab36073e777c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés