Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stability properties of anisotropic pressure stellarator plasmas with fluid and noninteractive energetic particles
 
research article

Stability properties of anisotropic pressure stellarator plasmas with fluid and noninteractive energetic particles

Cooper, W. A.  
•
Graves, J. P.
•
Tran, T. M.  
Show more
2006
Fusion Science and Technology

The three-dimensional (3-D) VMEC code has been modified to model an energetic species with a variant of a Bi-Maxwellian distribution function that satisfies the constraint B . del F-h = 0, and the 3-D TERPSICHORE stability code has been extended to investigate the effects of pressure anisotropy in two limits. The lower limit is based on a purely fluid Kruskal-Oberman (KO) energy principle (ignoring the stabilizing kinetic integral), and the upper limit is obtained from an energy principle in which the hot particle pressure and current density refrain from interacting with the dynamics of the instability because their diamagnetic drift frequency is considered much larger than the dominant growth rate. We have specifically investigated the instability properties of a Heliotron device with a major radius of 3.9 m and total (beta) similar or equal to 3.9%, where the energetic particle contribution (beta(h)) varies from 0 to 1.3% for T-parallel to/T-perpendicular to = 4. Both models demonstrate a significant stabilization of a global m/n = 4/2 mode as (beta(h))/(beta) approaches 1/3, with the noninteracting (NI) hot particle model virtually reaching the point of marginal stability when (beta(h))/(beta) similar or equal to 1/4. A variation of T-parallel to/T-perpendicular to at fixed (beta(h))/(beta) = 1/3 shows a noticeable decrease in the absolute magnitude of the unstable eigenvalue in the range 1 <= T-parallel to/T-perpendicular to <= 2 in the fluid KO model. The NI energetic particle model remains near marginality in the range 1 <= T-parallel to/T-perpendicular to <= 4. The Mercier stability is consistent with the global mode calculations. Performance benchmarks of the TERPSICHORE code on several different computers are presented.

  • Details
  • Metrics
Type
research article
DOI
10.13182/FST06-A1242
Web of Science ID

WOS:000239822600017

Author(s)
Cooper, W. A.  
Graves, J. P.
Tran, T. M.  
Gruber, R.  
Yamaguchi, T.
Narushima, Y.
Okamura, S.
Sakakibara, S.
Suzuki, C.
Watanabe, K. Y.
Show more
Date Issued

2006

Published in
Fusion Science and Technology
Volume

50

Issue

2

Start page

245

End page

257

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/22332
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés