Modeling and control of TCV

A new approach to the modeling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modeling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modeling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalized coprime factorization H-infinity controller is developed for the the Tokamak A Configuration Variable (TCV), CRPP-EPFL, Lausanne, Switzerland, tokamak using the linearized model, which has been extensively verified on the TCV and JT-60U, JAERI, Naka, Japan, tokamaks. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models.


Published in:
Ieee Transactions on Control Systems Technology, 13, 3, 356-369
Year:
2005
ISSN:
1063-6536
ISBN:
1063-6536
Other identifiers:
Laboratories:
SPC
CRPP




 Record created 2008-04-16, last modified 2018-01-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)