Abstract

The ball punch test technique was used to evaluate the conventional tensile and impact properties of the tempered martensitic steel EUROFER97 from room temperature down to liquid nitrogen temperature. The testing was carried out on unirradiated material only with small disks, 3 mm in diameter and 0.25 mm in thickness. For comparison, tensile tests were also performed over the same temperature range. Correlations between the load at the plastic bending initiation and the maximum load of the punch tests with the yield stress and the ultimate tensile stress of the tension tests could be established. The temperature dependence of the specific fracture energy of the punch test was used to define a ductile-brittle transition temperature (DBTT) and to correlate this with the DBTT measured from impact Charpy on KLST specimens. The results are compared with other available correlations done in the past on other ferritic steels. (C) 2002 Elsevier Science B.V. All rights reserved.

Details

Actions