Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effect of plasma shape on confinement and MHD behaviour in TCV
 
research article

Effect of plasma shape on confinement and MHD behaviour in TCV

Weisen, H.  
•
Alberti, S.  
•
Berry, S.
Show more
1997
Plasma Physics and Controlled Fusion

The TCV tokamak (B-T < 1.5 T, R approximate to 0.88 m, a < 0.25 m) has produced a wide variety of plasma configurations, both diverted and limited, with elongations kappa(a), ranging from 0.9 to 2.58, triangularities delta(a) from -0.7 to 1 as well as discharges with nearly rectangular cross sections. Plasma currents of 1 MA have been obtained in elongated discharges (kappa(a) approximate to 2.3). Ohmic discharges with delta(a) < 0 have smaller sawteeth and higher levels of MHD mode activity than plasmas with delta(a) > 0. The main change in MHD behaviour when elongation is increased beyond two is an increase in the relative importance of modes with m, n < 1 and a reduction of sawtooth amplitudes. Confinement is strongly dependent on plasma shape. In ohmic limiter L-modes energy confinement times improve typically by a factor of two as the plasma triangularity is reduced from 0.5 to 0 at constant q(a). There is also an improvement of confinement as the elongation is increased. In most discharges the changes in confinement are explained by a combination of geometrical effects and power degradation. A global factor of merit H-s (shape enhancement factor) has been introduced to quantify the effect of Bur surface geometry. The introduction of H-s into well known confinement scaling expressions such as Neo-Alcator and Rebut-Lallia-Watkins scaling leads to improved descriptions of the effect of shape for a given confinement mode. In some cases with kappa(a) greater than or equal to 1.7 limited ohmic L-modes undergo a slow transition to a confinement regime with an energy confinement improved by a factor of up to 1.5 and higher particle confinement. First experiments to study the effect of shape in ECRH at a frequency of 83 GHz (second harmonic) have been undertaken with 500 kW of additional power.

  • Details
  • Metrics
Type
research article
DOI
10.1088/0741-3335/39/12B/011
Web of Science ID

WOS:000071677500011

Author(s)
Weisen, H.  
Alberti, S.  
Berry, S.
Behn, R.  
Blanchard, P.  
Bosshard, P.  
Buhlmann, F.
Chavan, R.  
Coda, S.  
Deschenaux, C.
Show more
Date Issued

1997

Published in
Plasma Physics and Controlled Fusion
Volume

39

Start page

B135

End page

B144

Subjects

ITER

Note

Suppl. 12B

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/21408
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés