Lower Hybrid Current Drive in Tore Supra and Jet

Recent Lower Hybrid Current Drive (LHCD) experiments in TORE SUPRA and JET are reported. Large multijunction launchers have allowed the coupling of 5 MW to the plasma for several seconds with a maximum of 3.8 kw/cm2. Measurements of the scattering matrices of the antennae show good agreement with theory. The current drive efficiency in TORE SUPRA is about 0.2 x 10(20) Am-2/W with LH power alone and reaches 0.4 x 10(20) Am-2/W in JET thanks to a high volume-averaged electron temperature (1.9 keV) and also to a synergy between Lower Hybrid and Fast Magnetosonic Waves. At N(e)BAR = 1.5 x 10(19) m-3 in TORE SUPRA, sawteeth are suppressed and m = 1 MHD oscillations the frequency of which clearly depends on the amount of LH power are observed on soft x-rays, and also on non-thermal ECE. In JET ICRH produced sawtooth-free periods are extended by the application of LHCD (2.9 s. with 4 MW ICRH) and current profile broadening has been clearly observed consistent with off-axis fast electron populations. LH power modulation experiments performed in TORE SUPRA at N(e)BAR = 4 x 10(19) m-3 show a delayed central electron heating despite the off-axis creation of suprathermal electrons, thus ruling out the possibility of a direct heating through central wave absorption. A possible explanation in terms of anomlous fast electron transport and classical slowing down would yield a diffusion coefficient of the order of 10 m2/s for the fast electrons. Other interpretations such as an anomalous heat pinch or a central confinement enhancement cannot be excluded. Finally, successful pellet fuelling of a partially LH driven plasma was obtained in TORE SUPRA, 28 successive pellets allowing the density to rise to N(e)BAR = 4 x 10(19) m-3. This could be achieved by switching the LH power off for 90 ms before each pellet injection, i.e. without modifying significantly the current density profile.

Published in:
Plasma Physics and Controlled Fusion, 33, 13, 1621-1638

 Record created 2008-04-16, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)