Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Data-driven Precompensator Tuning for Linear Parameter Varying Systems
 
conference paper

Data-driven Precompensator Tuning for Linear Parameter Varying Systems

Butcher, Mark
•
Karimi, Alireza  
•
Longchamp, Roland  
2008
2008 47th IEEE Conference on Decision and Control
47th IEEE Conference on Decision and Control

Methods for direct data-driven tuning of the parameters of precompensators for LPV systems are developed. Since the commutativity property is not always satisfied for LPV systems, previously proposed methods for LTI systems that use this property cannot be directly adapted. When the inverse of the system exists in the proposed parameterisation of the precompensator, the LPV transfer functions commute and an algorithm using only two experiments on the real system is proposed. It is shown that this algorithm gives consistent estimates of the parameters of the system inverse despite the presence of stochastic disturbances. For the more general case, when the system inverse does not belong to the set of parameterised precompensators, another technique is developed. This technique requires a number of experiments equal to twice the number of precompensator parameters and it is shown that the calculated parameters minimise the mean squared tracking error.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CDC_Butcher_08.pdf

Access type

openaccess

Size

96.2 KB

Format

Adobe PDF

Checksum (MD5)

128dd94444d1290bbfbeaa1d4c2d5a0a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés