Male accessory sex organ morphogenesis is altered by loss of function of Hoxd-13
The role of the Hox gene Hoxd-13 in postnatal morphogenesis of the male accessory sex organs was examined by correlating the distribution and temporal regulation of expression in the accessory sex organs of postnatal mice with morphologic abnormalities of Hoxd-13-deficient transgenic mice. Previous studies of Hoxd-13 expression in the perinatal period have shown a broad domain of expression in the lower genitourinary tract, with expression in both mesenchyme and epithelium; focal expression was also noted in the epithelium of the nascent ducts of the developing prostate. Quantitative RT-PCR studies of Hoxd-13 expression in the 5 day mouse confirm widespread expression in the accessory sex organs developing from both the Wolffian duct and the urogenital sinus. Expression is down-regulated with age, and a detailed time course of expression in the developing prostate shows that the level of Hoxd-13 expression correlates with morphogenetic activity in the development of the prostate ductal system. Transgenic Hoxd-13-deficient mice display multiple abnormalities in the male accessory sex organs. The most severe abnormalities were observed in organs exhibiting ductal branching during postnatal development and included diminished mesenchymal folding in the seminal vesicles, decreased size and diminished ductal branching in the ventral and dorsal prostate, and agenesis of the bulbourethral gland. We conclude that Hoxd-13 expression in the postnatal period correlates with a period of intense morphogenetic activity in accessory sex organ development and that the function of Hoxd-13 is evidenced by morphologic abnormalities in accessory sex organs of the Hoxd-13-deficient mutant.
1997
208
4
454
65
Urology Department, Northwestern University Medical School, Chicago, Illinois, USA.
REVIEWED