Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Generation of nitric oxide and induction of major histocompatibility complex class II antigen in macrophages from mice lacking the interferon gamma receptor
 
research article

Generation of nitric oxide and induction of major histocompatibility complex class II antigen in macrophages from mice lacking the interferon gamma receptor

Kamijo, R.
•
Shapiro, D.
•
Le, J.
Show more
1993
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)

Availability of mice with a targeted disruption of the interferon gamma (IFN-gamma) receptor gene (IFN-gamma R0/0 mice) made it possible to examine parameters of macrophage activation in the absence of a functional IFN-gamma receptor. We asked to what extent other cytokines could replace IFN-gamma in the induction of nitric oxide or major histocompatibility complex class II antigen (Ia) expression in peritoneal macrophages. In thioglycollate-elicited macrophages from wild-type mice, tumor necrosis factor (TNF) alone was virtually ineffective in inducing release of NO2- (the endproduct of nitric oxide generation), but TNF enhanced NO2- release in the presence of IFN-gamma. In macrophages from IFN-gamma R0/0 mice, which were unresponsive to IFN-gamma, TNF completely failed to stimulate NO2- release. The stimulatory actions of IFN-alpha/beta on NO2- release were indistinguishable in wild-type and IFN-gamma R0/0 macrophages: IFN-alpha/beta was ineffective on its own, showed marginal stimulation of NO2- release in combination with TNF, and was moderately effective in the presence of lipopolysaccharide. The level of constitutive Ia antigen expression was not significantly different in peritoneal macrophages from wild-type and IFN-gamma R0/0 mice. An increased Ia expression was induced by IL-4 and granulocyte-macrophage colony-stimulating factor in both wild-type and IFN-gamma R0/0 macrophages, but the magnitude of this induction was less than with optimal concentrations of IFN-gamma in macrophages from wild-type mice. IFN-alpha/beta showed only a minor stimulatory effect on Ia expression in both wild-type and IFN-gamma R0/0 macrophages. Simultaneous treatment of wild-type macrophages with IFN-alpha/beta and IFN-gamma reduced the IFN-gamma-induced Ia expression in wild-type macrophages, but IFN-alpha/beta did not show an inhibitory effect on IL-4- or granulocyte-macrophage-colony-stimulating factor-induced Ia expression in either wild-type or IFN-gamma R0/0 macrophages. The important role of IFN-gamma in the regulation of the induced expression of major histocompatibility complex class II antigen was confirmed by showing that after systemic infection with the BCG strain of Mycobacterium bovis resident peritoneal macrophages from IFN-gamma R0/0 mice had a lower level of Ia expression than macrophages from wild-type mice. The inability of other cytokines to substitute fully for IFN-gamma in macrophage activation helps to explain the earlier observed decreased resistance of IFN-gamma R0/0 mice to some infections.

  • Details
  • Metrics
Type
research article
DOI
10.1073/pnas.90.14.6626
Author(s)
Kamijo, R.
Shapiro, D.
Le, J.
Huang, S.
Aguet, M.  
Vilcek, J.
Date Issued

1993

Publisher

National Academy of Sciences

Published in
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)
Volume

90

Issue

14

Start page

6626

End page

30

Note

Department of Microbiology, New York University Medical Center, NY 10016.

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
UPAGU  
Available on Infoscience
December 12, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/15429
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés