Shear bands in dense metallic granular materials

In this paper, the phenomenon of strain localization, i.e., shear banding, in densely distributed metallic assemblies has been studied. A discrete element methodology for analyzing metallic granular materials has been put forward. In this numerical model, elastoplastic contact, as well as friction, rolling resistance and cohesion between spheres, are explicitly taken into account. The calculations reveal that the shear banding mechanism in dense assemblies can be thought as an instability triggered by initial imperfections. Within a band, the motion, deformation and rearrangement of spheres soften the resistance of the aggregate, as these mechanisms create additional geometric imperfections. Additionally, the simulations showed that the shear-band width does not change conclusively with the friction, rolling resistance and plasticity parameters. However, cohesive strength, even in small amounts, drastically increased the shear-band width. Finally, the shear-band thickness and inclination angles are strongly dependent on the degree of initial imperfection. Whereas for a perfect assembly the shear band inclinations were consistently around 60degrees, more heterogeneous assemblies lead to shear band angles closer to the continuum mechanics solution, which is 45degrees. This was found to be in agreement with recent experimental observations. (C) 2003 Elsevier Ltd. All rights reserved.

Published in:
Journal of the Mechanics and Physics of Solids, 52, 3, 499-531

 Record created 2007-11-14, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)