Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Vectorial electromagnetic modes in V-shaped dielectric waveguides with application to quantum wire devices
 
research article

Vectorial electromagnetic modes in V-shaped dielectric waveguides with application to quantum wire devices

Crisinel, D.
•
Dupertuis, M. A.  
•
Kapon, E.
1999
Optical and Quantum Electronics

The properties of V-shaped optical dielectric waveguides are investigated in detail using a vectorial finite element method. The fundamental modes exhibit extremely tight, heart shaped near field patterns. The maximum intensity of the fundamental mode is found to be vertically shifted with respect to the geometrical center of the waveguide. Fundamental and higher order mode properties are extensively studied, including mode patterns, dispersion curves and polarization properties. The local mode polarization of the two fundamental modes varies from a horizontal (vertical) orientation at the groove center to TM (or TE respectively) far in the side wings. The optimal design of waveguides for GaAs/AlGaAs quantum wire diode lasers and Quantum Confined Stark Effect modulators grown on V-grooved substrates is discussed.

  • Details
  • Metrics
Type
research article
DOI
10.1023/A:1006994729465
Author(s)
Crisinel, D.
Dupertuis, M. A.  
Kapon, E.
Date Issued

1999

Published in
Optical and Quantum Electronics
Volume

31

Issue

9-10

Start page

797

End page

812

Subjects

optical waveguide

•

quantum wire

•

WAVE-GUIDES

•

LASERS

•

DEPENDENCE

Note

Swiss Fed Inst Technol, EPFL, Dept Phys, Inst Micro & Optoelect, CH-1015 Lausanne, Switzerland. Crisinel, D, Swiss Fed Inst Technol, EPFL, Dept Phys, Inst Micro & Optoelect, CH-1015 Lausanne, Switzerland.

ISI Document Delivery No.: 235FT

Cited Reference Count: 18

Cited References:

AMBIGAPATHY R, 1997, PHYS REV LETT, V78, P3579

ARAKAWA Y, 1982, APPL PHYS LETT, V40, P939

BECKER E, 1981, FINITE ELEMENTS INTR

BENAMI U, 1998, APPL PHYS LETT, V73, P1619

CASEY HC, 1975, J APPL PHYS, V46, P250

CITRIN DS, 1993, IEEE J QUANTUM ELECT, V29, P97

DUPERTUIS MA, 1998, EUROPHYS LETT, V44, P759

DUPERTUIS MA, 1998, INT C SEM LAS 98 NAR

FERNANDEZ FA, 1996, MICROWAVE OPTICAL WA

HADLEY GR, 1998 INT WORKSH OPT

KAPON E, 1989, PHYS REV LETT, V63, P430

KAPON E, 1993, OPTOELECTRONICS, V8, P429

LEHOUCK RB, 1997, ARPACK USERS GUIDE S

OSMAN N, 1994, J LIGHTWAVE TECHNOL, V12, P821

SAAD SM, 1985, IEEE T MICROW THEORY, V33, P894

SIMHONY S, 1991, APPL PHYS LETT, V59, P2225

SUDBO A, 1992, J LIGHTWAVE TECHNOL, V10, P4

VASSALLO C, 1997, OPT QUANT ELECTRON, V29, P95

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LOEQ  
Available on Infoscience
August 31, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/11331
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés